Tag: anaerobico

  • MMA/Grappling: scheda palestra (video-articolo)

    MMA/Grappling: scheda palestra (video-articolo)

    Se fallisci a pianificare, pianifichi di fallire

    Kamaru Usman

    Buona lettura!

    Introduzione

    Quello che segue è un esempio della preparazione che io stesso ho stilato e seguito a partire dal 31 agosto, fino ad arrivare ai primi di dicembre. Data la situazione che mezzo mondo stava (e sta) vivendo, mi è stato fin da subito impossibile capire se e quando ci sarebbero state gare. Nel dubbio, ho cerato di impostare un protocollo di strength and conditioning di una durata che oscillasse fra i tre ed i tre mesi e mezzo (12-14 settimane).

    Senza numeri sono tutti atti di fede

    Anni: 24
    Altezza: 1,83 m
    Peso iniziale (al 31/08): 73,85 kg
    Panca piana (1RM al 29/02): 67 kg
    Test di Cooper (al 29/08): 2200 m

    Questi numeri serviranno per il futuro. Il peso verrà misurato mano a mano per assicurarsi di rispettare i limiti della categoria di peso per la gara. I test massimali verranno ripetuti dopo il periodo gare, all’inizio di un nuovo macrociclo, in modo da vedere se la forza massimale e la resistenza aerobica sono migliorate (è bene fare la prova del nove per avere dei riscontri pratici).

    Let’s go! – Week 1 (adattamento anatomico)

    Dopo una quindicina di giorni di totale inattività si torna a sudare, ovviamente in senso sportivo. Eseguo il test di Cooper due giorni prima del 31 agosto (data di inizio del vero macrociclo di allenamento), giusto per aver una prova tangibile della mia condizione aerobica – poco più che discreta – e dei numeri utili per dei futuri confronti fra la condizione di partenza e quella che raggiungerò, si spera, fra alcune settimane.

    Causa alcuni acciacchi non ancora del tutto superati, chi è agonista negli sport da combattimento capirà, decido di non eseguire altri test atletici.

    Tre allenamenti (A-B-C)

    A: Forza e ipertrofia

    Panca piana (bilanciere)4×82′
    Panca inclinata 30° (manubri)3×1090″
    Seated band row3×201′
    Pull ups (anelli)5×6-82′
    Lento avanti (manubri)4×1090″
    Scrollate (manubri)3×151′
    Curl manubri in piedi (alternato)3×1090″
    Push down ai cavi3×1090″

    B: Capacità aerobica e addominali

    Cyclette45′ (70% FC)/
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)1′

    C: Forza/ipertrofia (lower body) e stretching.

    Deadlift (trap bar)5×82′
    Leg curl4×1090″
    Stretching completo30′/

    Nella prima e terza sessione mi sono dedicato alla forza e all’ipertrofia (con l’avanzare della programmazione si punterà sempre più la prima e meno alla seconda). Nella seconda alla resistenza aerobica (capacità). Questa prima settimana è da considerarsi a tutti gli effetti come un microciclo di adattamento anatomico (AA), ovvero un periodo dove si gettano le basi per lo sviluppo della forza dando modo all’organismo, e in particolar modo all’apparato locomotore attivo e passivo, di irrobustirsi e prepararsi al carico di lavoro via via più intenso che dovrà tollerare in un futuro prossimo. Nella speranza di prevenire eventuali infortuni. Sarà da considerarsi come di AA anche la seconda settimana di allenamento.

    N.B. Questa settimana solo allenamenti di preparazione atletica (la palestra dove da anni pratico sport da combattimento è ancora chiusa).

    Week 2 (adattamento anatomico e accumulo)

    A: Forza e ipertrofia

    Panca piana (bilanciere)5×82′
    Panca inclinata 30° (manubri)3×1090″
    Seated band row3×201′
    Pull up (anelli)6×6-82′
    Lento avanti (manubri)4×1090″
    Scrollate (manubri)3×151′
    Curl in piedi alternato (manubri)3×1090″
    Push down ai cavi3×1090″
    Deadlift (trap bar)5×82′
    Leg curl4×1090″

    B: Capacità aerobica e addominali

    Cyclette45′ (70% FC)/
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)1′

    C: Potenza aerobica, capacità aerobica e stretching

    Vogatore3-4×1000 m1:1
    Cyclette30′ (75% FC)/
    Stretching completo30′/

    Sempre incentrato sulla forza e l’ipertrofia il primo allenamento, con un leggero aumento del volume nella panca piana (per comodità ho apportato qualche modifica alla disposizione degli esercizi). Il secondo è invece identico alla precedente settimana. Mentre nel terzo, oltre a forza e ipertrofia, – più il consueto mega stretching finale -, trova posto la potenza aerobica (ora il quadro aerobico è completo). Quel 4×1000 m al vogatore con al recupero la dicitura “1:1” (terza colonna) intende dire che l’obiettivo è quello di percorrere 1000 metri nel minor tempo possibile ed usare come tempo di recupero il tempo impiegato per coprire il chilometro di distanza al macchinario (rapporto lavoro:recupero = 1:1).

    Capacità aerobica = capacità dell’organismo di portare avanti sforzi che coinvolgono grosse masse muscolari per periodi di tempo mediamente lunghi (almeno 30 minuti) a intensità media o medio-alta (60-80% FC max), lavorando sulla gittata cardiaca.

    Potenza aerobica = capacità dell’organismo di portare avanti sforzi che coinvolgono grosse masse muscolari per periodi di tempo limitati (2-8 minuti), lavorando ad alta intensità (≥ 90% FC) e a VO2max.

    La corsa, la pedalata e la vogata permettono di sviluppare in modo ottimale la capacità e potenza aerobica, ottenendo benefici sia a livello muscolare che cardiocircolatorio.

    • Nel caso del sistema muscolare si va a migliorare la capacità d’ossidazione delle fibre muscolari: migliore capacità di utilizzare l’ossigeno per avere energia. Perché aumentano gli enzimi che catalizzano reazioni dell’ossigeno e aumenta la densità mitocondriale.
    • Per il cardiocircolatorio: migliore circolazione del sangue, più veloce capacità di smaltimento delle sostanze metaboliche (come il lattato) e pressioni arteriose inferiori.

    Si ottiene quindi una migliore capacità di recupero [1].

    Al fine di ottenere dei buoni miglioramenti, l’obiettivo è quello di portare avanti il lavoro aerobico (aspecifico) per 6 settimane. Aggiungo che sul piano dell’allenamento specifico, in palestra col coach, questa settimana ho avuto 4 sessioni di allenamento: 2 di striking e 2 di lotta/grappling.

    Week 3 (accumulo)

    A: Forza e ipertrofia

    Panca piana (bilanciere)5×82′
    Panca inclinata 30° (manubri)3×1090″
    Seated band row3×201′
    Pull up (anelli)6×6-82′
    Lento avanti (manubri)4×1090″
    Scrollate (manubri)3×151′
    Curl in piedi alternato (manubri)4×1090″
    Push down ai cavi3×1090″
    Deadlift (trap bar)5×82′
    Leg curl4×1090″

    B: Capacità aerobica e addominali

    Cyclette60′ (75% FC)1′
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)30″

    C: Potenza aerobica, capacità aerobica e stretching

    Vogatore4×1000 m1:1
    Cyclette30′ (75-80% FC)/
    Stretching completo30′/

    Il volume complessivo continua a salire, sia negli esercizi coi pesi che in quelli di resistenza aerobica. Al contempo, sia sui multiarticolari (panca, lento avanti e stacco) che sugli esercizi volti all’incremento di capacità e potenza aerobica, si cerca di spingere un po’ di più (maggior peso sollevato o ritmo tenuto durante la pedalata). Sul piano dell’allenamento specifico, in palestra col coach, questa settimana ho avuto 5 sessioni di allenamento: 3 di striking e 2 di lotta/grappling.

    Week 4 (mantenimento volume)

    Tre allenamenti (A-B-C)

    A: Forza e ipertrofia

    Panca piana (bilanciere)6×62′
    Panca inclinata 30° (manubri)3×1090″
    Seated band row3×201′
    Pull up (anelli)6×82′
    Lento avanti (manubri)4×890″
    Scrollate (manubri)3×1590″
    Curl in piedi alternato (manubri)4×1090″
    Push down ai cavi3×1090″
    Deadlift (trap bar)6×62′
    Leg curl4×1090″

    B: Capacità aerobica e addominali

    Cyclette60′ (75%)/
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)30″

    C: Potenza aerobica, capacità aerobica e stretching

    Vogatore4×1000 m1:1
    Cyclette30′ (75-80% FC)/
    Stretching completo30′/

    Volume analogo a quello della settimana precedente, aumenta leggermente l’intensità di carico su un po’ di esercizi multiarticolari (panca piana, lento avanti, stacco da terra). Sul piano dell’allenamento specifico, in palestra col coach, questa settimana causa impegni non sono riuscito ad andare oltre le 3 sessioni di allenamento: 2 di striking e 1 di lotta/grappling.

    Week 5 (scarico forza/ipertrofia)

    A: Capacità aerobica

    Cyclette45′ (75-80% FC)/

    B: Potenza aerobica e addominali

    Vogatore5×1000 m1:1
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)30″

    C: Capacità aerobica e stretching

    Cyclette45′ (75-80% FC)/
    Stretching completo30′/

    Settimana caratterizzata da uno scarico passivo di forza e ipertrofia (non si sollevano pesi per dar l’opportunità all’apparato locomotore passivo di recuperare da eventuali microtraumi) e da un buon volume di lavoro “cardio”. Sul piano dell’allenamento specifico questa settimana ho avuto 5 sedute di allenamento: 3 di striking e 2 di grappling.

    Week 6 (intensificazione e scarico capacità aerobica)

    A: Forza e ipertrofia

    Panca piana (bilanciere)6×52-3′
    Panca inclinata 30° (manubri)3×890″
    Seated band row3×201′
    Pull up (anelli)6×82′
    Lento avanti (manubri)3×82′
    Scrollate (manubri)3×121′
    Curl in piedi alternato (manubri)3×890″
    Push down ai cavi3×101′
    Deadlift (trap bar)6×52-3′
    Leg curl4×1090″

    B: Capacità aerobica (scarico attivo) e addominali

    Cyclette45′ (75-80% FC)/
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)30″

    C: Potenza aerobica e stretching

    Vogatore5×1000 m1:1
    Cyclette (defaticamento)10-15′/
    Stretching completo30′/

    Riguardo alla preparazione atletica, questa settimana vi è stata una generale intensificazione nel lavoro coi pesi ed uno scarico attivo circa la capacità aerobica. Purtroppo, causa impegni lavorativi, non sono riuscito a prendere parte a più di 2 lezioni in palestra (1 di striking e 1 di lotta/grappling).

    Week 7 (trasformazione/intensificazione, scarico aerobico)

    A: Forza e ipertrofia

    Panca piana (bilanciere)5×52-3′
    Panca inclinata (manubri)3×890″
    Seated band row3×201′
    Pull up (anelli)6×82′
    Lento avanti (manubri)3×890″
    Scrollate (manubri)3×1290″
    Curl in piedi alternato (manubri)3×890″
    Push down ai cavi3×101′
    Deadlift (trap bar)5×52-3′
    Leg curl4×1090″

    B: Potenza aerobica (scarico attivo) e addominali

    Vogatore3×1000 m1:1
    Plank3×1′1′
    Russian twist10×30″30″
    Side plank3×30″ (a lato)30″

    C: Potenza e stretching

    Shock jump3×1090″
    Push press4×62′
    Box jump3×62′
    Stretching completo30′/

    Si intensifica ulteriormente il lavoro coi sovraccarichi, si “trasforma” la forza sinora accumulata in potenza e vi è uno scarico attivo di potenza aerobica.

    IMPORTANTE: seguendo i dettami del SISP (Servizio di Igiene e Sanità Pubblica) dell’ASL cittadina, sono stato costretto a interrompere la mia settimana di allenamento a causa di un precedente contatto con una persona risultata positiva al Covid-19. Pur non essendo stato troppo vicino alla persona in questione e non avendo sintomi ho dovuto mettere in pausa la mia passione. Questa settimana mi sono allenato lunedì (forza e ipertrofia), martedì (striking e lotta/grappling) e mercoledì (scarico attivo della potenza aerobica e rinforzo addome). Il resto è saltato.

    Nel video è spiegato tutto.

    Week 8 (intensificazione)

    A: Forza e ipertrofia

    Panca piana (bilanciere)5×52-3′
    Panca inclinata (manubri)3×890″
    Seated band row3×201′
    Pull up (anelli)6×82′
    Lento avanti (manubri)3×890″
    Scrollate (manubri)3×1290″
    Curl in piedi alternato (manubri)3×890″
    Push down ai cavi3×1090″
    Deadlift (trap bar)5×52-3′
    Leg curl4×1090″

    B: Power endurance (alattacida)

    Shock jump3×1090″
    Reactive med ball slam10×10-12″1′
    Jump squat10×10-12″1′
    Alternating waves (max effort)6×20″30″
    Jump squat6×20″30″

    C: Potenza e stretching

    Push press5×62′
    Box jump4×62′
    Stretching completo30′/

    Causa ennesimo DPCM tutto è un po’ andato in vacca. Questa settimana dell’intenso lavoro coi pesi (forza e potenza) è stato affiancato, per la prima volta in questa preparazione, a dell’intenso lavoro di power endurance (resistenza alla potenza). Di quest’ultima si era già parlato qui.

    A seguire il resto del programma che avrei svolto se i vari “lockdown light” non si fossero messi di mezzo (ovviamente non ci sono altri video da mostrarvi).

    Week 9 (intensificazione)

    A: Forza e ipertrofia

    Panca piana (bilanciere)5×42-3′
    Panca inclinata (manubri)3×890″
    Seated band row3×201′
    Pull up (anelli)6×82′
    Lento avanti (manubri)3×890″
    Scrollate (manubri)3×121′
    Curl in piedi alternato (manubri)3×890″
    Push down ai cavi3×101′
    Deadlift (trap bar)5×42-3′
    Leg curl4×1090″

    B: Power endurance (alattacida)

    Shock jump3×1090″
    Reactive med ball slam10×10″1′
    Jump squat (con sovraccarico)10×10″1′
    Alternating waves (max effort)6-8×20″30″
    Jump squat6-8×20″30″

    C: Potenza e stretching

    Push press5×62′
    Box jump4×62′
    Stretching completo30′/

    Si continua a spingere con i pesi (forza e potenza) e in più aumenta il volume di allenamento riguardante la resistenza alla potenza.

    Week 10 (scarico forza)

    A: Forza (scarico attivo)

    Panca piana (bilanciere)5×4 (-30%)2′
    Seated band row3×201′
    Pull up (anelli)6×52′
    Lento avanti (manubri)3×8 (-30%)90″
    Deadlift (trap bar)5×4 (-30%)2′

    B: Power endurance (alattacida)

    Shock jump3×1090″
    Reactive med ball slam10×10″1′
    Jump squat (con sovraccarico)10×10″1′
    Alternating waves (max effort)2: 5×20″30/90″
    Jump squat2: 5×20″30/90″

    C: Potenza e stretching

    Push press5×52′
    Box jump5×62′
    Stretching completo30′/

    Scarico attivo di forza, rimasto quasi invariato il resto del programma settimanale. Lo scarico riguarda l’intensità e il volume: quel “-30%” riguarda appunto un carico (kg) sollevato inferiore del trenta % e scompaiono gli esercizi secondari dedicati all’ipertrofia. E’ bene che quegli esercizi siano eseguiti lentamente e con una buona tecnica esecutiva. Riguardo la power endurance (alattacida) quel 2: 5×20″ (30″/90″) sta a indicare due blocchi da cinque serie per venti secondi di lavoro con trenta secondi di recupero fra le serie e novanta (un minuto e mezzo) fra i due blocchi.

    Week 11

    A: Forza

    Panca piana (bilanciere)4×42-3′
    Seated band row3×201′
    Pull up zavorrati (anelli)5×52-3′
    Lento avanti (manubri)3×62′
    Deadlift (trap bar)4×42-3′

    B: Power endurance (alattacida)

    Reactive med ball slam10×10″1′
    Jump squat (con sovraccarico)10×10″1′
    Alternating waves (max effort)2: 6×20″30/90″
    Jump squat2: 6×20″30/90″

    C: Potenza e stretching

    Push press5×52′
    Box jump5×62′
    Stretching completo30′/

    Piano piano ci si avvicina ad un ipotetico match, allora si usano i pesi per l’indispensabile: forza e potenza. Questa è inoltre l’ultima settimana di power endurance alattacida (si passerà poi a quella lattacida).

    Week 12

    A: Forza

    Panca piana (bilanciere)4×32-3′
    Seated band row3×201′
    Pull up zavorrati (anelli)5×42-3′
    Lento avanti (manubri)3×62′
    Deadlift (trap bar)4×32-3′

    B: Power endurance (lattacida) e stretching

    Alternating waves (max effort)2′
    Shadow boxing (recupero attivo)1′
    Calci al sacco (max effort)2′3×3 (90″)

    C: Potenza/forza speciale

    Landmine press (1 braccio)4-5×5
    1-2 al sacco (jab-diretto)4-5×52′
    Deadlift (trap bar)4-5×5
    Box jump4-5×52′
    Stretching completo30′/

    Nella seduta dedicata alla forza e alla potenza si lavora ancora intensamente (con esercizi di potenza più specifici). Inoltre, vi è un lavoro di resistenza alla potenza improntato su sforzi lattacidi. Il terzo allenamento settimanale diventa “ibrido” grazie all’alternanza di esercizi di forza (sollevamenti lenti) a esercizi balistici (gesti esplosivi). Quanto mostrato nelle ultime righe della tabella altro non è che un metodo a contrasto. Per chi se lo stesse chiedendo, per forza speciale si intende: «la forma di manifestazione della forza tipica di un determinato sport o il suo correlato muscolare specifico (cioè, i gruppi muscolari che partecipano ad un determinato movimento sportivo)».[2]

    Week 13

    A: Forza (mantenimento) e power endurance (potenza lattacida)

    Panca piana (bilanciere)4×32-3′
    Seated band row3×201′
    Pull up zavorrati (anelli)4×42-3′
    Lento avanti (manubri)3×62′
    Kettlebell swing (rec. attivo shadow boxing)3×1′3′
    Striking pao/sacco (max effort)*3×1′3′
    *rec. attivo solo grappling drills

    B: Power endurance (capacità lattacida) e stretching

    Alternating waves (max effort)2′
    Shadow boxing (recupero attivo)1′
    Calci al sacco (max effort)2′3×3 (1′)
    Stretching completo30′/

    C: Potenza/forza speciale

    Landmine press (1 braccio)4-5×5
    1-2 al sacco (jab-diretto)4-5×52′
    Deadlift (trap bar)4-5×5
    Box jump4-5×52′

    Questa settimana, così come la prossima, il volume di allenamento e l’intensità (kg) riguardanti la forza rimangono pressoché invariati: ricordiamoci che l’obiettivo è salire sul tatami/ring/gabbia, non diventare dei pesisti o powerlifter. Gli esercizi di recupero attivo (vuoto e drills in autonomia) hanno l’obiettivo di far calare significativamente la frequenza cardiaca (circa 60% FCmax).

    Week 14

    A: Forza (mantenimento) e power endurance (potenza lattacida)

    Panca piana (bilanciere)4×32-3′
    Seated band row3×201′
    Pull up zavorrati (anelli)4×42-3′
    Lento avanti (manubri)3×62′
    Kettlebell swing (rec. attivo shadow boxing)3×1′3′
    Striking pao/sacco (max effort)*3×1′3′
    *rec. attivo solo grappling drills

    B: Power endurance (capacità lattacida) e stretching

    Alternating waves (max effort)2′
    Shadow boxing (recupero attivo)1′
    Calci al sacco (max effort)2′3×3 (1′)
    Stretching completo30′/

    C: Potenza/forza speciale

    Landmine press (1 braccio)4-5×5
    1-2 al sacco (jab-diretto)4-5×52′
    Deadlift (trap bar)4-5×5
    Box jump4-5×52′
    Week 15

    A: Power endurance (potenza lattacida)

    Kettlebell swing + Striking pao/sacco*2-3: 3×45+45″3/5′
    *rec. attivo (3′) footwork + sprawl
    Solo grappling drill (cool down)5′ (60% FC)/

    B: Power endurance (capacità lattacida) e stretching

    Alternating waves (max effort)2′
    Shadow boxing (recupero attivo)1′
    Calci al sacco (max effort)2′4×3 (1′)
    Stretching completo30′/

    C: Potenza/forza speciale

    Landmine press (1 braccio)4-5×5
    1-2 al sacco (jab-diretto)4-5×52′
    Deadlift (trap bar)4-5×5
    Box jump4-5×52′

    Ultima settimana di fuoco, power endurance nelle sue varie declinazioni più il solito lavoro sulla potenza dei colpi e l’esplosività degli arti inferiori.

    Week 16 (Fight week)
    Kettlebell swing + Striking pao/sacco*3×45+45″3/5′
    *rec. attivo (3′) footwork + sprawl
    Alternating waves (max effort)2′
    Shadow boxing (recupero attivo)1′
    Calci al sacco (max effort)2′3×3 (1′)
    Solo grappling drill (cool down)5′ (60% FC)/

    Un’unica sessione, eseguita possibilmente di lunedì, dove si fa del lavoro piuttosto specifico alternando esercizi tipici di una competizione (tecniche di striking, grappling) a esercizi con sovraccarichi e corde (kettlebell, battle rope). Il resto della settimana riguarderà ciò che più conta: ripasso tecnico col maestro e/o con gli sparring partner, lavoro sul game-plan ed eventuale ricorso a metodiche di recupero. È di fondamentale importanza che i giorni antecedenti il match siano leggeri, in modo da favorire un buon recupero psico-fisico.

    Alcuni chiarimenti

    Quanto riportato nell’articolo e mostrato in video può esser preso come un esempio di preparazione per un fighter ma non necessariamente va preso come Bibbia. Si può lavorare bene in più modi, ottenendo risultati concreti.

    • Devo fare il test dei massimali o altri test atletici? Sì! Una o due volte l’anno, in modo da avere una prova tangibile dei miglioramenti ottenuti col duro lavoro.
    • Sono davvero necessari tutti quei complementari? No, solitamente si utilizzano meno esercizi secondari (“stile fitness”). Bisogna inoltre tenere a mente che troppo lavoro ipertrofico, su soggetti predisposti, potrebbe causare un aumento ponderale con conseguente difficoltà a rientrare in una determinata categoria di peso.
    • Il cardiofrequenzimetro è obbligatorio? Utile sì, obbligatorio no. Ci sono metodi manuali per avere dei valori indicativi della propria frequenza cardiaca (bpm) e alcune macchine (tapis roulant, cyclette) hanno delle bande metalliche create per misurarla.
    • E il riscaldamento? Ovviamente veniva eseguito prima di ogni sessione di allenamento (dando ciò per scontato, non è stato inserito nelle tabelle né filmato).
    • Ma l’alimentazione? Non è obbiettivo di questo video-articolo trattare di ciò, ma se può interessare quello riportato sotto è l’andamento del mio peso durante le prime 8 settimane del programma (prima della chiusura delle palestre via DPCM).
    Approfondimenti

    Qui di seguito una carrellata di articoli (gratuiti) e libri volti ad approfondire quanto detto o anche solo accennato fino ad ora.

    Metodi di potenziamento per gli sport da combattimento
    Periodizzazione dell’allenamento sportivo
    Sport da combattimento ed allenamenti errati
    Biologia dello sport
    Energia e sport
    Ultimate Conditioning for Martial Arts
    Nutrizione e integrazione per i fighters: linee guida
    Ultimate MMA Conditioning
    La periodizzazione dell’allenamento: teoria e pratica
    Fisiologia dell’esercizio fisico e dello sport
    Il taglio del peso negli sport da combattimento: linee guida
    Essentials of Strength Training and Conditioning
    Allenarsi in base alla frequenza cardiaca
    Fisiologia dell’esercizio fisico
    Allenare la potenza nelle MMA: guida teorico-pratica
    Allenamento della forza negli sport da combattimento (periodizzazione)
    Preparazione atletica per Lotta e Grappling: una panoramica generale
    Integrazione di caffeina per gli sport da combattimento e le arti marziali
    Allenamenti Sovietici: il paradosso della forza e della resistenza
    Gli infortuni nel pugilato e nelle MMA
    Programma di allenamento per le MMA (4 settimane)
    Tendini: salute e performance
    Il nuoto per i fighter: qualche appunto
    Cardio per fighter in quarantena: guida pratica
    Il vuoto con i pesetti: cosa dice la scienza?
    Corsa e boxe: correre serve a un pugile?
    Preparare un match di MMA secondo un allenatore UFC
    Idratazione per lo sport: salute e performance
    Kettlebell Training: moda o base del conditioning?
    La forza nello sport e in palestra: consigli ed errori da evitare
    Le immersioni nell’acqua fredda sono veramente utili?
    La preparazione atletica nella boxe: esempio pratico
    La sindrome da sovrallenamento
    La curva di forza-velocità e la sua applicazione nello sport
    Struttura base di un training camp per sport da combattimento
    Allenamento del collo per gli sport da contatto: teoria e pratica
    I massaggi per il recupero fisico
    MMA: l’allenamento in vista di un match secondo Greg Jackson
    Test atletici per sport da combattimento
    Stretching: teoria e pratica
    La preparazione atletica e la sconfitta.

    Conclusioni

    Allenatevi duramente. Con la testa, ragionando, ma fatevi il mazzo.

    E poi?

    Qualora voleste maggiori informazioni, o consulenze personalizzate, potete ricorrere al altri servizi qui descritti.

    Grazie per l’attenzione e buon allenamento.


    Bibliografia

    [1] Project Invictus – Intervista ad Alain Riccaldi (2014)

    [2] Scienze Motorie – Le tipologia di forza (2019)

  • Corsa e boxe: correre serve a un pugile?

    Corsa e boxe: correre serve a un pugile?

    “Io corro sulla strada, molto prima di danzare sotto le luci”, questa è solo una delle tanto celebri frasi di Muhammad Ali, che era solito percorrere diversi km di corsa la mattina presto per allenare il fisico, ma anche per temprare la sua anima. Abbiamo tutti negli occhi Rocky che corre inseguito da uno sciame di ragazzini, saltando panchine e sfrecciando sulla scalinata di Philadelphia.

    Introduzione

    A chiunque abbia praticato sport da combattimento sarà capitato di arrivare esausto o non arrivare proprio al termine di una seduta di sparring e sentirsi dire: ”Vai a correre, non hai abbastanza fiato!”.
    Se quindi per quella che possiamo considerare la “vecchia scuola”, la corsa, anche estensiva per lunghe distanze, era da considerarsi uno dei capisaldi della preparazione fisica di un pugile, nella nuova generazione si sta facendo largo l’idea opposta della totale inutilità di tale pratica e di come la parte di conditioning debba essere portata avanti con metodologie diverse.

    Domanda e risposta

    La domanda a cui l’articolo presente cerca di dare una risposta, basandosi sull’evidence based, ma in modo da restare comprensibile a tutti, è quindi la seguente: la corsa serve o meno ad un pugile?
    Per dare una risposta corretta ed esaustiva al quesito bisogna prima analizzare il modello prestativo dello sport a cui si fa riferimento e, di conseguenza, ai sistemi energetici che entrano in gioco. La durata dei round è di 3’ con 1’ di recupero fra essi, il loro numero totale può variare da un minimo di 3 nel dilettantismo ad un massimo di 12 nei match professionistici titolati. All’interno del round stesso si possono alternare fasi di studio (60% aerobico/anaerobico alternato) a fasi di scambio (40% anaerobico lattacido), mentre il minuto di recupero è in condizioni di aerobica.

    Sopra potete osservare il diverso intervento dei sistemi energetici durante la corsa continua su varie distanze (dagli 800 metri alla maratona).1

    Dunque per quanto riguarda la bioenergetica utilizzata “i sistemi energetici dominanti, utilizzati nella boxe, sono quello anaerobico alattacido, anaerobico lattacido e quello aerobico, e l’attività è classificata come misto alternato (aerobico-anaerobico), con prevalenza di fasi anaerobiche” (Bompa, 2001).

    Andiamo a vedere brevemente in cosa consistono i tre sistemi energetici sopracitati per fare chiarezza.

    • Il sistema anaerobico alattaccido è un sistema con una forte disponibilità di energia, ma limitata nel tempo, si esaurisce entro 6-8 secondi, durante i quali non vi è accumulo di acido lattico e non vi è richiesta di ossigeno.
    • Il sistema anaerobico lattacido si attiva dopo i 6-8 secondi, raggiunge il picco entro i 30-45 secondi e si esaurisce in 120 secondi, non necessita di ossigeno ma si verifica un accumulo di acido lattico proporzionale all’intensità dell’esercizio.
    • Il sistema aerobico, infine, entra in gioco per attività di lunga durata, ma bassa intensità, richiede la presenza di ossigeno e sfrutta le riserve muscolari ed epatiche di glicogeno come “carburante”.

    Da questa analisi parrebbe che un lavoro estensivo come la corsa, in cui il sistema energetico preponderante è quello aerobico, a dispetto di un modello prestativo in cui questo sistema energetico ha un ruolo marginale, farebbe pensare che la “nuova generazione” che considera inutile questa pratica possa aver ragione, ma andiamo ad analizzare cosa dice la scienza a riguardo.
    I benefici della corsa estensiva sono molteplici. Quelli che più ci interessano sono principalmente due: il miglioramento dell’efficienza del sistema cardiocircolatorio ed il miglioramento della capacità di ossidazione del sistema muscolare, questi, infatti, permetteranno all’atleta di migliorare la capacità di recupero, abbassare la frequenza cardiaca a riposo, migliorare la capacità e la velocità di smaltimento del lattato. Ne consegue dunque che correre costituisce il metodo migliore e più semplice per incrementare l’efficienza e l’efficacia del sistema aerobico e del suo relativo potenziale di produzione energetica.

    I sistemi energetici anaerobico lattacido e alattacido sono fondamentali, ma non saranno mai al top della loro efficienza, se di base non vi è un solido sistema energetico aerobico. Non si può migliorare
    il cardio, solo con i circuiti, perché sono un metodo ad alta intensità in cui si arriva velocemente a superare la soglia anaerobica con conseguente accumulo di lattato e lo sforzo richiesto è così elevato da non rendere possibile svolgere un lavoro continuativo di durata.
    Correre e perfezionare quindi sistema energetico aerobico, non farà solo essere più performanti a basse intensità, ma anche ad alte intensità, in quanto di riflesso diventerà più efficiente anche il sistema energetico anaerobico lattacido grazie all’innalzamento positivo della soglia anaerobica e la velocità e la capacità di smaltimento del lattato saranno incrementate.2
    In opposizione a questo parere, alcuni giovani preparatori vedono la corsa come “la mortificazione del sistema nervoso” e la ritengono poco utile o addirittura dannosa, “se ho X riprese da 3 minuti, perché devo correre per un’ora consecutiva?”.
    Gli adattamenti cardiaci eccentrici, ossia legati ad un alto volume di lavoro dovuto alla corsa estensiva, sono inversamente proporzionali ad adattamenti concentrici, ossia legati a lavori ad alta intensità, trasformando quindi i pugili in moderni Forrest Gump e fondisti mancati.3
    Da un punto di vista fisiologico muscolare si può notare quali sono gli effetti del lavoro aerobico come la corsa, durante questa pratica si ha un passaggio dalle fibre Fast Twich (FT) più rapide, ma più affaticabili, a fibre Slow Twitch (ST), che presentano una capacità ossidativa maggiore grazie a maggior numero e dimensione dei mitocondri rispetto alle FT. 4
    Di conseguenza questo ultimo elemento è in disaccordo con uno sport in cui potenza e velocità rappresentano qualità fondamentali. Risulta, così evidente che la classica corsa continua di 10-12 km può risultare controproducente durante la preparazione di un match.
    In ossequio all’idea aristotelica del “giusto mezzo”, si può dire che la corsa è utile, ma solo se utilizzata con metodi e modulazioni corrette e programmate. La corsa estensiva potrebbe essere utilizzata in periodi precisi della stagione agonistica, ad esempio all’inizio dell’anno sportivo, nel caso di uno stop per le vacanze, al ritorno da un infortunio o come mantenimento in fasi di scarico. Si parte quindi da metodi estensivi in cui l’obiettivo è il progressivo aumento del volume, mantenendo una frequenza cardiaca moderata (intorno al 60% della FC max) e si proseguirà spostando il focus sull’intensità che aumenterà gradualmente fino a lavori di soglia anaerobica, con una riduzione del volume.

    Conclusioni

    Nella speranza di essere stato abbastanza esaustivo nei contenuti e di facile comprensione nella forma, vi auguro una buona lettura ed una buona corsa programmata!

    I campioni non si costruiscono in palestra. Si costruiscono dall’interno, partendo da qualcosa che hanno nel profondo: un desiderio, un sogno, una visione.

    Muhammad Ali

    Grazie per l’attenzione.

    Articolo di Christian Nicolino
    Laureato in Scienze e Tecniche Avanzate dello Sport
    Preparatore Fisico UIPASC

    Bibliografia

    1 Prof.ssa Paola Trevisson – Tecnica e didattica dell’atletica leggera (Dispense SUISM, a.a. 2014/2015)
    2 Perché un fighter deve correre anche se non gli serve?; Alain Riccaldi; 14 marzo 2015, projectinvictus.com
    3 Corsa e sport da combattimento: quando proporla?; Fabio Zappitelli; 23 marzo 2019, corebosport.com
    4 I miti degli sport da combattimento; Lorenzo Mosca; 5 marzo 2017; manipulusmosca.com

  • Preparazione atletica per i giocatori di basket diversamente abili

    Preparazione atletica per i giocatori di basket diversamente abili

    sports-812845_1920

    E’ ormai da parecchie settimane che mi occupo della preparazione atletica della squadra di basket del progetto Pegaso di Asti. Quando mi hanno fatto questa proposta ho accettato senza indugiare più di tanto, questo anche per mettere in pratica gli insegnamenti della materia “APA/AFA” che ho avuto al secondo anno universitario di Scienze Motorie.

    In questo articolo parlerò della preparazione atletica che, con l’aiuto dei due allenatori, ho fatto seguire ai ragazzi, dando qualche indicazione generale.

    Attività fisica adattata

    AFA = “…programmi di esercizio non sanitari, svolti in gruppo, appositamente disegnati per individui affetti da malattie temporanee/o croniche finalizzati anche alla modificazione dello stile di vita per la prevenzione secondaria e terziaria della disabilità” (Macchi e Benvenuti, 2012).

    Capture.JPG

    Dopo aver fatto una breve ed infruttuosa ricerca sul web, ho deciso di analizzare un po’ di cose e di buttare giù una bozza di macrociclo.

    Teoria dell’allenamento

    Struttura e materiale a disposizione: Palestra scolastica dotata di campo da basket ( x m), 2 spalliere, dei materassi spessi circa 40 cm, una ventina di cinesini di diversi colori, due coni alti 30 cm circa e, ovviamente, un discreto numero di palloni basket.

    Squadra: 19 giocatori in totale (di cui solo una donna), con un’età che va dai 18 ai 40 anni. Il numero medio di giocatori per allenamento è intorno ai 15. Di tutto il gruppo, 2 persone sono affette dalla sindrome di down, ciò, nella pratica, le porta a distrarsi spesso, non capendo quasi mai il corretto svolgimento degli esercizi e concentrandosi unicamente sull’atto finale di una qualsiasi azione di gioco: tirare a canestro! Altri due soggetti sono gravemente in sovrappeso (e questo condiziona moltissimo la loro capacità di muoversi) e

    Allenamenti settimanali: solamente 1 allenamento a settimana della durata di un’ora.

    Calendario gare: Week-end interi dedicati alle gare ogni 3-4 mesi circa.

    Risultano quindi chiare un po’ di cose: il tempo è quello che é, e la preparazione atletica non deve rosicarne troppo all’allenamento della tecnica (e anche della tattica). Per il poco materiale a disposizione e problemi articolari e coordinativi di vario genere, gli atleti non avranno modo di allenare la forza massimale (non ci sarebbe neanche il tempo necessario per provare a lavorare sugli schemi motori). Inoltre, un certo numero di praticanti (6) è completamente impossibilitato ad eseguire come si deve ogni esercizio, a dirla tutta, oltre a camminare (a fatica) e muovere le braccia può fare poco, questi giocatori avranno sempre delle aggevolazioni sulle esercitazioni (gli verranno quindi fatte eseguire delle varianti meno complicate). Anche se quest’ultime porteranno magari ad un diverso utilizzo dei sistemi energetici e/o capacità condizionali non importa: ciò che conta è dar la possibilità a tutti di muoversi, fare sport, divertirsi con gli altri!

    Struttura allenamenti

    Lontano dalle gare: 30-45′ su 1h saranno dedicati alla preparazione atletica (riscaldamento incluso), i restanti 15-30′ a lavori incentrati sulla tecnica e sulla tattica.

    In prossimità delle gare: 20-30′ circa di preparazione atletica (riscaldamento incluso) e 30-40′ di allenamento tecnico-tattico.

    Cosa bisogna allenare di preciso?

    Forza

    • Massimale
    • Esplosivo-elastica
    • Resistente

    Velocità / rapidità

    Resistenza

    • Aerobica
    • Anaerobica (alla potenza e alla velocità) 

    In più: agilità, rinforzo del core, stretching ed equilibrio 

    Linee guida pratiche

    Forza massimale: dato il basso livello atletico generale sono più che sufficienti dei piegamenti sulle braccia (push ups). Da 5-6 ripetizioni fino a 10, serie comprese fra le 3 e le 6 per ogni esercizio. I ragazzi meno forti possono eseguirli con le ginocchia appoggiate a terra, in modo da rendere l’esercizio meno intenso.

    Per gli arti inferiori invece, è sufficiente l’esercizio hip thrust a corpo libero (bipodalico o monopodalico).

     

     

    Forza esplosivo-elastica: piccoli balzi standard e balzi con contromovimento, sia bipodalici che monopodalici (poche ripetizioni ed un buon recupero, possibilmente attivo).

    single-leg-box-jump
    Balzo monopodalico su un rialzo

    Per ottenere risultati soddisfacenti non è necessario un gran volume di allenamento. Schemi di allenamento come dei 3×5, 3×6, 3×8, 4×6* possono essere più che sufficienti. *serie x ripetizioni.

    Forza resistente: esercitazioni a intensità media e medio-bassa. Sforzi continui e prolungati per incrementare le sue varie espressioni:

    • F. resistente su base aerobica: almeno 2′ di lavoro continuo
    • F. resistente su base anaerobica: (potenza lattacida): 40-90″ di lavoro cont.
    • F. resistente su base anaerobica: (capacità lattacida): 90-120″ di lavoro cont.

    Il recupero completo è previsto solamente per la potenza lattacida. Al riguardo potrebbe essere utile un ripasso sui sistemi energetici (qui) e sulla frequenza cardiaca (qui).

    002 (2)

    Con poco materiale, tempo a disposizione e tenendo anche conto dello scarso bagaglio motorio dei più, è quasi impossibile andare a lavorare su tutte le sfaccettature della forza resistente. Senza abbatterci, possiamo comunque mettere nero su bianco degli esempi di esercitazioni pratiche.

    Un esercizio su tutti è quello di camminare, magari palleggiando, con alle spalle un compagno che oppone resistenza tirando all’indietro il partner che cammina (dopo averlo cinto per i fianchi), rendendo più impegnativa la camminata. Le tempistiche di lavoro sono quelle elencate prima: >2′ (FR aerobica), 40-90″ (FR anaerobica, potenza lattacida), 90-120″ (FR anaerobica, capacita lattacida).

    Velocità e capacità di reazione: esercizi per lo sviluppo della rapidità nei piccoli spostamenti con e senza palla (sprint con deviazioni, skip e movimento degli arti inferiori su speed ladder, esercitazioni che alla fine portano a tirare a canestro). Sprint su distanze comprese fra i 10 ed i 40 metri. Giochi di gruppo in grado di stimolare la prontezza dei riflessi, simulazione di azioni di gioco, eccetera.

    Esempio pratico

     

    Resistenza:

    • Aerobica: non c’è il tempo materiale per svilupparla con la classica corsa a Vo2max (potenza aerobica) od il fondo (capacità aerobica), tenendo anche conto dei problemi motori più o meno gravi che impedirebbero ad un cospicuo numero di ragazzi di correre bene per tot minuti. Le modalità di gioco (tempi, elevato numero dei cambi, eccetera), fanno sì che il sistema aerobico non debba essere troppo efficiente). Fare sport per un’ora o più consente di avere già una discreta capacità aerobica di base. In questo specifico caso è sufficiente quella, pertanto l’allenamento del sistema aerobico sarà indiretto.
    • Anaerobica: brevi scatti con recuperi incompleti per allenare la resistenza alla rapidità. Balzi, slanci e lanci della pallone. Il tutto con recuperi incompleti.

    Agilità: dribbling e movimenti di vario genere (cambi di direzione, skip, rotazioni del corpo di 90-180-360° gradi attorno all’asse longitudinale) fra i coni, cinesini o su speed ladder. Un esempio lo trovate qui sotto ed a questo link.

     

     

    Rinforzo core e stretching: esercizi di vario genere per il rinforzo dell’addome e della zona lombare (crunch, sit up, plank, estensioni lombari da sdraiati). Inoltre, per mantenere una buona flessibilità è consigliabile eseguire degli esercizi di stretching alla fine dell’allenamento. Non è casuale l’utilizzo della parola “mantenere”, infatti per incrementare la flessibilità servono almeno 2-3 sedute specifiche a settimana. E’ pertanto buona cosa, consigliare alla squadra di eseguire dello stretching, almeno gli esercizi più semplici, anche in altri giorni della settimana.

    Equilibrio e propriocezione: camminata lenta o piccoli balzi (mono e bipodalici) su superfici instabili (materassine), ricezione e lanci della palla stando in equilibrio su una gamba sola.

    Macrociclo di allenamento (esempio pratico)

    Ipotizzando che gli allenamenti inizino la seconda settimana di settembre e le prime gare siano a metà dicembre. Durata macrociclo: 15 settimane, 1 allenamento a settimana della durata media di 1 ora, 4 allenamenti mensili.

    Settembre (30-40' di preparazione atletica)
    Allenamento n.1 - FM, FE, EQ, ABS e ST
    All.2 - FM, FE, AG, EQ, ABS e ST
    All.3 - FM, FE, VEL, EQ, ABS, e ST
    All.4 - FM, FE, VEL, ABS e ST
    
    Ottobre (30')
    All.1 -FM, FE, VEL, AG, EQ e ST
    All.2 - FM, FE, VEL, AG, EQ e ST
    All.3 - FM, FE, VEL, AG, EQ e ST
    All.4 - FE, FR, VEL, AG, EQ e ST
    
    Novembre (20-30')
    All.1 - FE, FR, VEL, RP, AG e ST
    All.2 - FE, FR, VEL, RP e ST
    All.3 - FR, RV, RP, ABS e ST
    All.4 - RV, RP, EQ e ST
    
    Dicembre (15-20')
    All.1 - RV, AG e ST
    All.2 → competizione!
    
    Legenda: FM = forza massimale; FE = forza esplosiva; FR = forza resistente; EQ = equilibrio; ABS = rinforzo core; ST = stretching; AG = agilità; RP = resistenza alla potenza; RV = resistenza alla velocità.

    Ovviamente questo è solo un esempio, i metodi di periodizzazione sono molteplici, tutto va contestualizzato.

    Altre indicazioni generali
    • Ricorrere ad esercizi/giochi di gruppo che coinvolgano e facciano divertire i ragazzi il più possibile, in modo da evitar di far calare la loro soglia di attenzione (già bassa).
    • Dare poche indicazioni e semplici istruzioni alla squadra, in modo da non mandare i ragazzi in confusione.
    • Far sì che in ogni allenamento siano trattate più capacità condizionali e coordinative possibili, bisogna ottimizzare il poco tempo a disposizione.
    • Essere armati di una dose enorme di pazienza.
    • Non essere troppo rigidi ma neanche perdere il controllo della situazione.

     

    Buon allenamento!

    .

    oc

    .

    L’articolo ti è piaciuto? Supporta il mio lavoro!

    .

    Logo Patreon

    .

    Referenze e approfondimenti

    Cravanzola E. – Capacità condizionali e coordinative: iniziamo a conoscerle (2015)

    Dawes J. and Roozen M. – Developing Agility and Quickness (2012)

  • Creatina: guida all’integrazione

    Creatina: guida all’integrazione

    La creatina è indubbiamente uno degli integratori più diffusi ed utilizzati nell’ambiente della palestra. In questo articolo, dal titolo sicuramente provocativo, cercheremo di parlare di tutto ciò che riguarda questo composto (fisiologia, materiale scientifico, rapporto con altri integratori, dosaggio, eccetera). Buona lettura!

    chest-exercises-1

    Cenni di chimica e fisiologia

    La creatina è un composto ergogenico che nel nostro corpo si trova per un 40% in forma libera, per un 50% in forma fosforilata e per il restante 10% è contenuta nel fegato, ove è sintetizzata da due aminoacidi ed un coenzima, reni e cervello. Il nostro organismo ne produce circa 1 grammo al giorno. La creatina viene utilizzata principalmente per la sintesi dell’ATP (adenosintrifosfato) del sistema anaerobico alattacido.

    E’ presente nel cibo (manzo, latte, tonno ecc.) ma in quantità assai ridotte che mai e poi mai potrebbero sostituire una supplementazione esterna.

    La maggior parte degli studi attualmente presenti in letteratura scientifica associa l’assunzione di creatina, cronica e non, a miglioramenti della performance anaerobica (forza e potenza) [1,2,3,4]. Anche l’ipertrofia muscolare è influenzata positivamente da questo composto [5,6].

    Performance
    Effetti della creatina su sforzi brevi (grafico di sinistra, ≤ 30″) e sforzi un po’ più duraturi (grafico a sinistra, 30-150″). Oltre i 150″ di sforzo continuo, i miglioramenti sono meno netti. Legenda: AE = arm ergometry; BE = cicloergometro (cyclette); IK = forza isocinetica di torsione; IM = forza isometrica; IT = forza isotonica; JP = salto; RN = sprint (corsa); SK = pattinaggio veloce; SW = nuoto; KY = kayaking. Branch J. D. (2003) [21].

    Come per la questione EPO di cui avevamo già parlato qui, su un certo numero di soggetti la creatina non ha alcun effetto (soggetti “non-responder”), i quali rappresentano indicativamente il 20-30% della popolazione [7]. Uno studio del 2004 sostiene che i soggetti “responder” tendano ad avere dei livelli di creatina intramuscolare abbastanza bassi e per questa ragione, una volta assunta la creatina con gli integratori, i livelli di quest’ultima cambino significativamente (in positivo). I ricercatori del medesimo studio, ritengono inoltre che i “responder” abbiano mediamente più massa magra e fibre muscolari rapide (tipo II) [8].

    Oltre a quanto già detto, come riportano molti autori, la creatina accelera la supercompensazione del glicogeno se assunta in concomitanza con dei carboidrati, i quali a loro volta danno una mano nello stoccaggio della creatina nei muscoli [22,23,24].

    Durante il primo mese di assunzione si ha sempre un aumento di peso (circa 1-2 kg) derivante dalla forte ritenzione idrica che causa questo composto, ciò in sport con classi di peso può essere un problema. Il corpo si libera di questa acqua intracellulare 2-3 settimane dopo lo stop della assunzione di creatina. Uno scarico, o stop definitivo, può aver senso solo ed esclusivamente per un discorso di peso, utilità per il proprio sport, costi (la creatina non la regalano) e feedback dell’atleta, dato che essa non dà assuefazione.

    Presunto antagonismo con la caffeina

    Più di 20 anni fa, un celebre studio di Vandenberghe e colleghi [9] notò, quasi per caso, un certo antagonismo fra la creatina e la caffeina. Lo studio tuttavia presentava grossi limiti (breve durata, un solo test per misurare la variazione di performance, un periodo di scarico troppo breve, un campione poco ampio, dosi di caffeina forse eccessive). Negli anni a seguire, sono state pubblicate una miriade di ricerche scientifiche che hanno smentito questo antagonismo [10,11,12,13,14]. Il fatto che molte di esse abbiano usato protocolli di assunzione-scarico differenti dallo studio di Vandenberghe citato ad inizio paragrafo, non esclude del tutto che fare un carico di creatina a pochi giorni da una competizione (20-25 grammi/dì per 4-5 giorni di fila), possa annullare gli effetti positivi della caffeina, o viceversa. Questo però solamente in acuto.

    Campi di utilizzo

    Bodybuilding e fitness, powerlifting, weightlifting, atletica leggera (nonostante l’aumento di peso scaturito dalla sostanza). E’ inoltre utilizzata nelle pratiche di taglio del peso, infatti, dopo la disidratazione, abbinata a molta acqua, aiuta a richiamare liquidi a livello intracellulare.

    Tipologie

    Esistono vari tipi di creatina, dalla classica monoidrato alla etil estere o alcalina. Dietro a tutte queste suddivisioni, purtroppo, c’è molto marketing. La più conveniente in termini di costi-benefici è la monoidrato (creatina combinata con una molecola di acqua). Le altre forme, quasi tutte più costose di quest’ultima, non apportano chissà che effetti superiori, anzi, teoricamente la creatina etil estere (CEE) è anche peggiore della monoidrato. Perché? Perché è stato visto che si degrada subito, convertendosi quasi immediatamente in creatinina (suo primario prodotto metabolico), risultando quindi inefficace per l’incremento delle prestazioni e della massa muscolare [15,16]. “L’integrazione con creatina etil estere ha mostrato un grande aumento nel siero (sanguigno, NdR) dei livelli di creatinina senza aumentare in modo significativo i livelli di creatina totale nei muscoli. Questo può voler dire che una larga porzione di creatina etil estere è stata degradata all’interno del tratto gastrointestinale dopo l’ingestione.
    Inoltre sembra che l’assorbimento di creatina etil estere da parte dei muscoli non è abbastanza imponente da aumentare i livelli di creatina nei muscoli stessi senza prima una significativa degradazione di creatina in creatinina” [17].

    Creatina
    Da sinistra a destra: livelli sierici di creatina, creatinina e contenuto di creatina nei muscoli. PLA = placebo; CRT = creatina monoidrato; CEE: creatina etil estere (Spilane M. et al, 2009)

    Discorso simile per la creatina alcalina, la quale teoricamente dovrebbe migliorare l’assorbimento della creatina grazie ad una riduzione della conversione in creatinina, la cosa però è stata smentita da uno studio di qualche anno fa [18]. O la citrato, che ha dimostrato buoni risultati ma non è mai stata confrontata con la monoidrato.

    Per di più, una recentissima review di Andres S. e colleghi, oltre ad aver ribadito la sicurezza della monoidrato, ha sconsigliato la creatina orotata e gluconato perché apparentemente poco sicure per la salute [25].

    In definitiva, marketing a parte, la monoidrato sembra a tutti gli effetti essere la migliore forma di creatina attualmente in commercio (e costa anche meno…).

    Effetti collaterali

    I problemi che si potrebbero manifestare con l’uso, e abuso, di creatina sono principalmente due: disturbi gastrointestinali e diarrea.

    Nonostante in passato sia stato fatto un po’ di terrorismo psicologico sulla questione creatina-danni renali. La scienza ha smentito questi ipotetici problemi ai reni derivanti dall’assunzione di creatina in soggetti sani [19].

    Dosaggio

    Se ne consiglia un’assunzione di 3-5 g/dì. Quella del carico iniziale di creatina (20-25 grammi nei primi giorni) è una teoria ormai superata, in quanto nel cronico un dosaggio più contenuto ma costante dà i medesimi risultati di uno, almeno inizialmente, più spinto [20]. Tuttavia, l’assunzione di 20-25 g/dì può avere senso in acuto. Se ad esempio al week-end c’è una gara, un atleta potrebbe ricorrere al carico di creatina (diviso in singole dosi di 5 grammi l’una) a partire dal lunedì della stessa settimana.

    Esempio pratico

    Lunedì: 20-25 g
    Martedì: 20-25 g
    Mercoledì: 20-25 g
    Giovedì: 20-25 g
    Venerdì: 20-25 g
    Sabato: 5 g
    Domenica: gara

    Può essere presa in vari momenti della giornata (in compresse o polvere), appena svegli, in concomitanza o 30 minuti dopo un pasto, 90 minuti prima di un allenamento o poco dopo.

    Conclusioni

    Che dire, siamo davanti ad uno degli integratori alimentari più studiati e più efficaci in assoluto. E’ consigliabile provarla almeno negli sport di forza, potenza e anaerobici (alta intensità e breve durata). Meno indicata per gli sport più aerobici come il nuoto o le corse di lunga durata (maratona), tenendo anche conto del problema legato al leggero aumento del peso.

    Ovviamente prima bisogna guardare alle priorità alimentari e concentrarsi sull’allenamento, la creatina non ha nulla di miracoloso, tuttavia può essere un valido alleato per molti.

    Buon allenamento!


    oc
    Bibliografia

    Cravanzola E.  – Caffeina per la performance e la salute: tutto quello che bisogna sapere (2018)

    1 Buford T. W. et al. – International Society of Sports Nutrition position stand: creatine supplementation and exercise (2007)

    2 Gualano B. et al. – In sickness and in health: the widespread application of creatine supplementation (2012)

    3 Kreider R. B. – Effects of creatine supplementation on performance and training adaptations (2003)

    4 Preen D. et al. – Effect of creatine loading on long-term sprint exercise performance and metabolism (2001)

    5 Stone M. H. et al. – Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players (1999)

    6 Jones A. L. et al. – Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players (1999)

    7 Greenhaff L. P. – The nutritional biochemistry of creatine (1997)

    8 Syrotuik D. G. et al. – Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders (2004)

    9 Vandenberghe K. et al. – Caffeine counteracts the ergogenic action of muscle creatine loading (1996)

    10 Doherty M. et al. – Caffeine is ergogenic after supplementation of oral creatine monohydrate (2002)

    11 Spradley B. D. et al. – Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance (2012)

    12 Lee C. L. et al. – Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance (2011)

    13 Vanakoski J. et al. – Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations (1998)

    14 Fukuda D. H. – The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans (2010)

    15 Chanutin A. – The fate of creatine when administered to man (1926)

    16 Schantz E. et al. – Creatine ethyl ester (1955)

    17 Spillane M. et al. – The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels (2009)

    18 Jagim A. R. et al. – A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate (2012)

    19 Pline K. et al. – The effect of creatine intake on renal function (2005)

    20 N. Wilder et al. – The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players (2001)

    21 Branch J. D. – Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis (2003)

    22 Green et al. – Creatine ingestion augments muscle creatine uptake and glycogen synthesis during carbohydrate feeding in man (1996)

    23 Nelson A. G. et al. – Muscle glycogen supercompensation is enhanced by prior creatine supplementation (2001)

    24 Derave W. et al. – Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans (1985)

    25 Andres S. et al. – Creatine and creatine forms intended for sports nutrition (2017)

  • Test atletici per sport da combattimento

    Test atletici per sport da combattimento

    AJPrima di ogni training camp, sia che si tratti di professionismo o di semplice dilettantismo, è buona cosa far effettuare agli atleti dei test specifici, per valutare lo stato di forma e capire quali sono i punti deboli e quali quelli di forza. Durante l’imminente macrociclo di allenamento, si andrà ovviamente a lavorare di più sui primi e un po’ meno sui secondi. Per chi fosse poco ferrato in materia è consigliabile fare prima un breve ripasso sulle capacità condizionali e coordinative (qui) e sui sistemi energetici (qui).

    Questo e molto altro ancora nel libro sullo strength and conditioning per sport da combattimento che è attualmente in fase di scrittura.

    Buona lettura!

    Capacità organico-muscolari e coordinative da testare
    • Forza massimale
    • Forza esplosiva (o potenza)
    • Forza resistente
    • Resistenza
    • Velocità/rapidità
    • Mobilità articolare
    • Stabilità ginocchio
    Test atletici e relativi valori

    Forza massimale: panca piana; squat; stacco da terra; trazioni zavorrate.

    Ovviamente è di fondamentale importanza la tecnica. Possedere il corretto schema motorio consente di reclutare i giusti muscoli (tenendo comunque presente che si tratta di esercizi multiarticolari) e di limitare il rischio infortunio.

    Panca piana: 1,25-1,5x Bw; Squat: 1,5-2xBw

    Stacco: 1,75-2xBw; Trazioni zavorrate: 0,25-0,5xBw*

    *le cifre rappresentano i carichi massimali che gli atleti riescono a sollevare (1RM) riferiti al proprio peso corporeo (Bw, bodyweight). Riguardo alle trazioni, il peso è il sovraccarico legato alla vita tramite la cintura. Ad esempio, un atleta che pesa 100 kg (x0,25 o x0,5) deve riuscire ad eseguire una trazione alla sbarra completa con una zavorra di almeno 25 kg.

    Forza esplosiva: push press; vertical jump; broad jump; plyo box jump up.

    A differenza degli esercizi di forza massimale, qui entrano in gioco veramente troppi fattori soggettivi. E’ quindi molto difficile stabilire una scala di valori numerici per i vari esercizi. Eccetto che per il push press: 0,75-1xBw.

    Gli esercizi esplosivi riguardano i piani di movimento tipici degli sport da combattimento (frontale e trasversale). Le unità di misura per tutti e tre i salti sono, ovviamente, in centimetri.

    Forza resistente: push ups max reps; pull ups max reps, plank max time.

    Qui c’è poco da spiegare, un esercizio di spinta, uno di trazione ed uno di isometria del core. Massimo numero di piegamenti sulle braccia consecutivi, massimo numero di trazioni prone (pull ups) ed infine un ponte (plank) mantenuto per più tempo possibile (senza perdere la contrazione addominale).

    Resistenza: test di Conconi (individuazione soglia anaerobica) e test di Cooper; è necessario per prima cosa prendere il battito cardiaco a riposo.

    TEST

    Il test di Conconi può essere effettuato in laboratorio (su cicloergometro), su tapis roulant o cyclette, in alternativa anche su pista di atletica [1]. Quest’ultima opzione è la meno attendibile e infatti sta cadendo un po’ in disuso. Il test di Cooper va invece fatto per avere un’idea generale della resistenza fisica dell’atleta. Consiste nel correre per dodici minuti di fila, cercando di coprire la maggior distanza possibile [2]. Sui tapis roulant più moderni, si possono eseguire entrambi questi test, insieme a molti altri (foto a sinistra).

    Di seguito, i risultati ritenuti più o meno soddisfacenti (da molto bene a malissimo), espressi in metri, rapportati alla varie fasce di età (si parla ovviamente di uomini attivi e perfettamente sani). Ulteriori approfondimenti, compresi i valori validi per la popolazione femminile, li potete trovare qui.

    valutazioni

    Velocità: sprint sui 40 metri e test delle due linee.

    Indicativamente dei tempi ritenuti soddisfacenti per gli sprint sui 40 m sono:

    Uomini → mediocre: 5.20-5.40″; buono: 5.19-4.90″; ottimo: <4.90″.

    Donne → mediocre: 5.90-5.65″; buono: 5.64-5.35″; ottimo: <5.35.

    I valori si riferiscono ad atleti sani con un’età compresa fra 18-35 anni.

    40m

    Il secondo test consiste invece nel tracciare due linee parallele, distanti circa 40 cm (immagine riportata sotto) e nell’andare con i piedi “avanti e indietro” per il maggior numero di volte possibile nel tempo concesso (dieci secondi).

    40 cm
    Una singola ripetizione dell’esercizio (non ci sono spostamenti laterali)

    Si parte con entrambi i piedi dietro ad una linea (B) e si portano i piedi oltre la linea opposta (A) uno per volta, alla massima velocità possibile, poi alla stessa maniera si riportano i piedi dietro alla line di partenza (B), e così via, senza interruzioni, fino allo scadere del tempo (10″). Nella figura sopra, tutti i passaggi (1-5) corrispondono ad una singola ripetizione dell’esercizio.

    Mobilità articolare: sit and reach e test di mobilità delle spalle (sollevamento bracia con bacino retroverso e schiena appoggiata ad un muro).

    Il sit and reach test consiste nel ricercare la massima estensione della catena muscolare posteriore da seduti, inclinando il busto in avanti (figura sotto). Le punte delle dita devono cercar di toccare la porzione della tavola più distante possibile. Si salverà il risultato facendo un segno proprio sulla superficie della tavola posizionata poco sopra i piedi ed annotando la distanza raggiunta. A questo link potete trovare un video pratico del test.

    Invece nell’altro test, dopo un breve riscaldamento, l’atleta si posiziona di spalle ad un muro, con la schiena perfettamente aderente alla parete in ogni suo punto (zona lombare compresa).

    Cattura

    Successivamente deve sollevare gli arti superiori provando a toccare il muro alle proprie spalle, mantenendo ovviamente l’articolazione del gomito bloccata. Si misura con un metro (o righello) la distanza delle mani dalla parete.

    Con le suddette regole, la maggior parte delle persone non è in grado di arrivare a toccare la parete. Quando la mobilità richiesta in questa prova viene raggiunta, si passa ad esercizi più impegnativi, di cui magari parleremo in futuri articoli.

    Stabilità ginocchio: lateral and medial single leg hop series (video sotto). Con questo esercizio si valuta la stabilità dell’articolazione del ginocchio, una delle più soggette agli infortuni. Nel caso venissero notate delle problematiche (valgismo, varismo, scarso equilibrio, errato appoggio monopodalico), queste dovranno essere corrette, se necessario con la supervisione di un fisioterapista od un fisiatra.

    Conclusioni

    Quelli di cui abbiamo appena parlato sono i principali test che un preparatore atletico serio dovrebbe far eseguire ai propri atleti praticanti SdC. Ovviamente nulla vieta di sostituirne alcuni con delle varianti, ci sono anche vari fattori che entrano in gioco (disponibilità delle strutture, caratteristiche individuali dei fighters, infortuni pregressi, tipo di programmazione, tempo a disposizione, eccetera). I test vanno eseguiti all’inizio di ogni training camp e vanno poi ripetuti all’inizio del training camp successivo, confrontando i risultati.

    Senza numeri sono tutti atti di fede

    Detto ciò, non resta che salutarci ed augurare a tutti un buon allenamento!


    oc
    Bibliografia

    [1] Conconi F. et al. – Determination of the anaerobic threshold by a noninvasive field test in runners (1982)

    [2] Cooper H. K. et al. – A means of assessing maximal oxygen intake. Correlation between field and treadmill testing (1968)

    Landow L. – Ultimate conditioning for martial arts (Human Kinetics 1a Ediz., 2016)

    Riccaldi A. – The chronicles of Legionarius: la preparazione atletica di Alessio Sakara (2013)

    Bertuzzi R. – Energy System Contributions During Incremental Exercise Test (2013)

    Cravanzola E. – Allenarsi in base alla frequenza cardiaca (2016)

    Travis N. Triplett – Assessing Speed and Agility Related to Sport Performance (2012)

  • Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!

    phpThumb_generated_thumbnailjpg

    Cos’è l’EPO?

    Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.

    Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.

    N.B:  benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).

    TYP-466793-3082397-globuli-rossi

    Come incrementare i livelli di EPO

    Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].

    Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.

    Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.

    Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.

    Capture11

    Risposte fisiologiche e adattamenti all’allenamento ad alta quota

    La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].

    Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].

    *Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.

    In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].

    Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2,  questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.

    altaquota_07

    La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.

    Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].

    Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.

    Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.

    Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.

    Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.

    “La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione.
    Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.

    Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.

    L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].

    Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.

    Capture

    Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.

    Sulla questione muscolare non si sa molto altro.

    Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).

    Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:

    • diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
    • aumento del nervosismo;
    • peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
    • calo delle capacità coordinative;
    • aumento dei disturbi del sonno.
    61875780
    Applicazioni pratiche

    Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?

    L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.

    Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che  dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.

    Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.

    Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.

    In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.

    Allenarsi in alto e gareggiare in basso

    Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.

    Allenarsi in basso e gareggiare in alto (live high and train low)

    Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.

    Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].

    Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).

    F2.large
    Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]

    Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.

    Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.

    Controindicazioni più e meno gravi dell’allenamento in altura
    • Scottature solari e oftalmia delle nevi;
    • irritazioni delle vie respiratorie;
    • mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
    • edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
    • edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
    • emorragia retinica (si verifica dai 6000 m in poi).
    Due parole sulla training mask (TM)

    4a7bfe9d-8041-4589-8d9f-f38cc6471bfeNegli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.

    Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.

    A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).

    An external file that holds a picture, illustration, etc.Object name is jssm-15-379-g002.jpg
    Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]

    “Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro:
    – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici.
    – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%).
    – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta.
    – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti).
    – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].

    Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).

    Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].

    Conclusioni

    Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.

    Grazie per l’attenzione.


    oc
    Bibliografia

    Willmore H. J., Costill L. D. –  Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005)
    Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017)
    Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016)
    1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991)
    2 Strømme A. B. – Training at altitude (1980)
    3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983)
    4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007)
    5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996)
    6 Schoene et al. – Limits of human lung function at high altitude (2001)
    7 E. R. Buskirk et al. –  Maximal performance at altitude and on return from altitude in conditioned runnerd (1967)
    8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate
    9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975)
    10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967)
    11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967)
    12 Schmitt et al. –  ??? (2008) fonte primaria errata sul libro di riferimento
    13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000)
    14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001)
    15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004)
    16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989)
    17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988)
    18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005)
    19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973)
    20 Chapman et al. – Individual variation in response to altitude training (1998)
    21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002)
    22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016)
    23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016)
    24 Ness J. – Is live high/train low the ultimate endurance training model?

  • MMA: l’allenamento in vista di un match secondo Greg Jackson

    MMA: l’allenamento in vista di un match secondo Greg Jackson

    greg-jackson-kicked-out-of-corner

    Per chi é del settore, Greg Jackson non ha bisogno di presentazioni, tuttavia ci tengo ugualmente a spendere due parole su di lui, nel caso qualcuno non lo conoscesse. G. J. é un coach di arti marziali miste, specializzato nella lotta libera, che allena (altro…)

  • La preparazione atletica nella boxe: esempio pratico

    La preparazione atletica nella boxe: esempio pratico

    Nel seguente articolo, Dario Morello, pugile professionista, nonché Strength and Conditioning coach, ci illustra una sua routine di allenamento. Buona lettura!

    70ed8af2-6911-4187-925e-c1416a6a2967

    Per anni negli SDC ma in particolare nel mondo della boxe “old school”, i tecnici della disciplina hanno sempre screditato l’uso di esercizi con sovraccarico in quanto, a loro avviso, causa perdita di velocità di esecuzione specifica (colpi\azioni di gara).
    Dopo un’incerta fase intermedia in cui spesso il pugile si  (altro…)

  • Allenarsi ad alta quota: guida completa

    Allenarsi ad alta quota: guida completa

    Non è raro, fra internet e televisione, vedere atleti dei più svariati sport allenarsi appositamente in zone parecchio sopra il livello del mare (+1500 m). Ora, in questo articolo, andremo a vedere le risposte fisiologiche e gli adattamenti indotti dall’allenamento svolto a determinate altezze.

    allenamento7.jpg

    Vi avviso: sono argomenti abbastanza complessi, quindi un po’ noiosi, ma é fondamentale saperli se si vuole essere ben informati su i pro e i contro di certe scelte sportive.

    Un’attività fisica può  (altro…)

  • Allenarsi in base alla frequenza cardiaca

    Allenarsi in base alla frequenza cardiaca

    La corsa è senza dubbio il tipo di attività fisica più praticato in assoluto. Da chi corre per sport, a chi lo fa semplicemente per passione e salute.

    runner-802912_1920

    In questo articolo vedremo come allenarci per diverse finalità, correndo in base alla nostra frequenza cardiaca (fc).

    Prima però è necessario fare un passettino indietro: cos’è la frequenza cardiaca? E i bpm? La frequenza cardiaca è il numero di battiti del cuore al minuto, questi ultimi, abbreviati con “bpm”, sono la sua unità di misura. Per lavorare bene, con una certa precisione, è consigliabile spendere una cinquantina di euro per acquistare un cardiofrequenzimentro, ci si può allenare ed ottenere buoni risultati anche senza di esso ma sarà più difficile, l’autoregolazione non è una cosa alla portata di tutti.

    Per allenarsi senza cardiofrequenzimetro bisognerà ricorrere alla scala di Borg (o scala RPE), tutti i dettagli qui. Nel caso si voglia invece ottenere un numero, indicativo, dei battiti cardiaci si può ricorrere alla misurazione manuale. Ecco il procedimento: mettere due dita alla base del collo, contare i battiti per 15″ esatti e poi moltiplicare il numero ottenuto per quattro.

    Per calcolare la nostra frequenza cardiaca (teorica) ci sono varie formule matematiche, quelle che seguono sono le due più accreditate:

    220 - età (anni)
    Oppure: 208 - 70% età
    es. Lorenzo, 20 anni, FC massima di 200 bpm
    

    Nelle persone sane la FC a riposo è compresa fra i 60 e i 100 bpm, negli sportivi di un certo livello può essere leggermente più bassa (40-50 bpm).

    Ora è giunto il momento di introdurre un altro concetto: VO2max. Il VO2max è un parametro biologico che esprime il volume massimo di ossigeno che un essere umano può consumare nell’unità di tempo per contrazione muscolare.

    E’ misurabile direttamente tramite cicloergometro o indirettamente con altri test fisici. L’allenamento può migliorarlo di circa il 25%. Nei soggetti allenati la soglia anaerobica (punto di passaggio della produzione di energia dal sistema aerobico – in via principale – a quello anaerobico lattacido) corrisponde, negli sportivi, all’85% circa del VO2max e al 60% nei soggetti sedentari.

    002 (2)
    Per ulteriori approfondimenti sui sistemi energetici clicca qui

    Una volta giunti in prossimità della soglia anaerobica (SA), il metabolismo energetico verrà shiftato maggiormente sugli zuccheri, aumenterà l’accumulo di acido lattico e la respirazione sarà più difficoltosa. Oltre il VO2max , in regime alattacido, gli sforzi potranno essere mantenuti per pochi secondi e non si accumulerà acido lattico durante il normale svolgimento di attività fisica.

    Durante l’allenamento, in base alla frequenza cardiaca (FC), possiamo stabilire con discreta precisione quale sistema energetico sia maggiormente attivo. Essa può variare in base all’anzianità di allenamento, sesso ed età di una persona. Ad esempio con una FC inferiore o uguale ai 160-170 bpm (battiti per minuto), il sistema principalmente coinvolto in un uomo giovane ed allenato sarà quello aerobico.

    Effetti allenanti in base alla FC massima
    • <60% = lo stimolo è molto debole, considerato poco allenante
    • 60-75% = capacità aerobica
    • 75-85% = potenza aerobica e soglia anaerobica
    • 85-92% = allenamento anaerobico e tolleranza lattacida

    Capture.JPG

    In passato era credenza comune pensare che un allenamento prolungato a bassa intensità fosse più indicato per il dimagrimento, tanto da chiamare il range compreso fra il 60 ed il 75% della frequenza cardiaca: “zona lipolitica”. Tuttavia si è visto che, benché un allenamento poco intenso attinga maggior energia dai grassi (figura sotto), ciò non significa che in cronico un’attività fisica ad intensità moderata (60-75% FC), abbia effetti dimagranti così superiori  rispetto ai protocolli di allenamento più intensi, questo a parità di dispendio calorico [1,2,3,4,5,6]. Se l’obiettivo è il dimagrimento, la dieta è sempre il fattore principale.

    Capture

    Riguardo invece alla correlazione fra la scala RPE e la FC max, per farla breve, la scala utilizza de valori numerici, da 6 a 20 ed i valori della FC massima sono a grandi linee i seguenti.

    • 6 = 20% FCmax
    • 7 = 30%
    • 8 = 40%
    • 9 = 50%
    • 10 = 55%
    • 11 = 60%
    • 12 = 65%
    • 13 = 70%
    • 14 = 75%
    • 15 = 80%
    • 16 = 85%
    • 17 = 90%
    • 18 = 95%
    • 19-20 = 100%

    Intensità dello sforzo percepito:

    • 6 = intensità nulla
    • 7-8 = sforzo estremamente leggero
    • 9 = sforzo leggero (una camminata lenta)
    • 10-11 = leggero (riscaldamento blando)
    • 12-13 = sforzo abbastanza impegnativo
    • 14-15 = un duro sforzo
    • 16-17 = sforzo molto duro
    • 18-19 = sforzo estremamente duro, intensità submassimale
    • 20 = sforzo massimale

    Alcune cifre sono state prese da “Principi di metodologia del fitness“.

    Prima di lasciarci, una curiosità. Un test di accuratezza che ha analizzato alcune tipologie di cardiofrequenzimetro, ha rivelato che rispetto all’ECG (elettrocardiogramma), i cardiofrequenzimetri più precisi sono quelli che si posizionano sul petto (precisione del 99,6%), molto meno fedeli sono invece quelli da polso (67-92%).

    Grazie per l’attenzione!

    Buon allenamento!


    oc
    Bibliografia

    Gollin M. – Metodologia della preparazione fisica (Elika, 2014)
    Fagioli F., Bartoli L. – Allenarsi con il cardiofrequenzimetro (Elika, 1998)
    Wikipedia – Scala di percezione dello sforzo (link)
    Andy Peloquin – Chest Strap Vs Wristband Heart Rate Monitors
    1 Schoenfeld B. J. et al – Does cardio after an overnight fast maximize fat loss? (2011)
    2 Ballor D. L. et al. – Exercise intensity does not affect the composition of diet- and exercise-induced body mass loss (1990)
    3 Grediagin A. et al. – Exercise intensity does not effect body composition change in untrained, moderately overfat women (1995)
    4 Mougios V et al. – Does the intensity of an exercise programme modulate body composition changes? (2006)
    5 Pansini L. – Bruciare grassi non significa dimagrire (parte 2): effetto dell’attività fisica (2017)
    6 Keating S. E. et al. – A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity (2017)