Oltre alla miriade di cose in cui interviene la genetica, nel bene e nel male, essa è in grado di influenzare anche la struttura legamentosa e tendinea del corpo, aumentando o diminuendo così la predisposizione agli infortuni.
Cenni di fisiologia articolare
Prima di passare a piatto caldo, è necessario partire dalle basi. Le ossa dello scheletro (lunghe, corte, irregolari, piatte) si uniscono tra di loro attraverso articolazioni, o per continuità o per contiguità.
Le articolazioni continue prendono il nome di sinartrosi dove la continuità è caratterizzata dalla interposizione di un tessuto cartilagineo fibroso (sono la maggioranza delle articolazioni). Quelle per contiguità invece, prendono il nome di diartrosi, o giunture sinoviali, e sono formate da due capi articolari, una capsula articolare ed una cavità articolare. I capi articolari sono rivestiti da uno strato di cartilagine (più frequentemente ialina che fibrosa), di spessore variabile da 0,2 a 0,5 mm, che conferisce quella caratteristica d superficie liscia. La capsula articolare, lassa oppure tesa, è strutturata all’interno con due strati di membrana sinoviale e all’esterno con una membrana fibrosa. Nella membrana sinoviale prendono posto anche strutture nervose e vasi sanguigni. La cavità articolare infine, è uno spazio a forma di fessura contenente il liquido sinoviale che, oltre ad avere la capacità di lubrificare l’articolazione, nutre la cartilagine articolare.
Le articolazioni si compongono inoltre di: legamenti (di rinforzo, conduzione ed arresto), borse e guaine articolari, dischi e menischi articolari, labbra articolari.
Le articolazioni sono soggette ad usura a causa della degenerazione cartilaginea che si verifica per una non appropriata non capillarizzazione che, nel tempo, favorisce la perdita di plasticità propria della cartilagini, producendo patologie artrosiche degenerative.
Come sottolineato da Collins M. e Raeligh S., gli sforzi eccessivi che portano a lesioni dei tessuti molli del sistema muscolo-scheletrico, derivanti da lavori usuranti o attività fisica, sono influenzate dalla genetica individuale. In special modo quelle al tendine d’Achille (caviglia), alla cuffia dei rotatori (spalla) ed ai legamenti crociati (ginocchia). Le varianti di sequenza all’interno dei geni che codificano le diverse proteine di matrice extracellulare dei tendini e/o dei legamenti sono state associate a specifici infortuni di specifiche zone dei tessuti. Per esempio le varianti della sequenza del gene della Tenascina-C (TNC), COL5A1 ed Metalloproteinasi di matrice 3 (MMP3) sono state collegate alle tendinopatie del tendine d’Achille. Entrando un po’ più nel dettaglio, le varianti della sequenza del gene della Tenascina-C sono state associate sia alle tendinopatie che alle rotture del tendine d’Achille. mentre le varianti del COL5A1 e COL1A1, geni che forniscono le istruzioni genetiche per realizzare le componenti del collagene di tipo I e V, sono state correlate ad infortuni al legamento crociato posteriore.
Tuttavia, gli stessi ricercatori specificano che è difficile capire in che misura questi fattori genetici possano influenzare gli infortuni, aggiungendo che in futuro potranno essere fatti dei programmi riabilitativi personalizzati proprio sulla base di queste informazioni legate ai geni [1].
Una meta-analisi del 2015, quindi alto impatto statistico, ha raccolto i dati provenienti da studi pubblicati in letteratura scientifica fra il 1984 ed il 2014 (trent’anni precisi). I ricercatori – Longo U. G. et al. – hanno confermato tutto ciò che avevano dedotto Collins e Raeligh nel 2009, aggiungendo che, oltre alla genetica, contano ovviamente diversi altri fattori, in primis lo stile di vita [2].
Più di un decennio fa, September A. V. e coll. in una review avevano parlato del ruolo della genetica negli infortuni. Dicendo però che mentre per le problematiche al crociato posteriore e al tendine d’Achille vi sono delle sequenze genomiche “incriminate”, per il crociato anteriore e la cuffia dei rotatori no. Per queste ultime due sono necessari più studi e più dati [3,4].
Conclusioni
Come già accennato, molte cose devono ancora essere scoperte, al giorno d’oggi sappiamo che la salute di alcuni tendini e legamenti è fortemente influenzata dalla genetica, quindi dai caratteri ereditari non modificabili. Sta alla scienza scoprire quali altri lo sono e come può essere individualizzato un programma di allenamento e di riabilitazione, in modo minimizzare il rischio infortuni e recuperare l’efficienza articolare al meglio possibile.
Ma accantonando un attimo tutte queste nozioni teoriche, essere attivi fisicamente è il miglior modo per preservare una buona salute articolare, in modo da prevenire l’osteoporosi ed evitare posture errate. Per quanto riguarda invece gli sportivi, un buon riscaldamento e una corretta esecuzione tecnica degli esercizi (con i sovraccarichi ed a corpo libero) rimangono le cose migliori da fare per evitare infortuni, le uniche, visto che di integratori con una reale efficacia non ce ne sono (la glucosamina non fa eccezione).
Weineck J. – Biologia dello sport (Calzetti Mariucci, 2013) Pruna R. et al. – Influence of Genetics on Sports Injuries (2017) September A. V. et al. – Application of genomics in the prevention, treatment and management of Achilles tendinopathy and anterior cruciate ligament ruptures (2012) 1 Collins M. et al. – Genetic risk factors for musculoskeletal soft tissue injuries (2009) 2 Longo U. G. et al. – Unravelling the genetic susceptibility to develop ligament and tendon injuries (2015) 3 September A. V. et al. – Tendon and ligament injuries: the genetic component (2007) 4 Orth T. et al. – Current concepts on the genetic factors in rotator cuff pathology and future implication for sports physical therapists (2017)
Vi siete mai chiesti quali sono i processi che stanno dietro alla selezione delle fonti quando dobbiamo informarci su un determinato argomento? Come mai noi tendiamo a propendere per un articolo piuttosto che un altro? In che modo possono influenzarci i pregiudizi?
Se la risposta è negativa, questo è l’articolo che fa per voi!
A differenza di quel che si potrebbe pensare in un primo momento, l’argomento di questo articolo è perfettamente attinente all’ambiente del benessere e dello sport, anzi, lo è a tutti gli aspetti dell’esistenza umana.
Definizione
I bias cognitivi sono costrutti basati su percezioni errate della realtà e/o pregiudizi che di frequente possono portare le persone a fare affermazioni e pensieri errati su i più svariati argomenti. Invece, le fallacie logiche (o sofismi) sono errori nascosti nel ragionamento che comportano la violazione delle regole di un confronto argomentativo corretto.
E’ tutt’altro che raro – soprattutto su internet – quando i commenti sono espressi in maniera civile, vedere utenti consapevoli di essere di parte o pieni di pregiudizi circa un determinato tema, principiare una discussione con frasi del tipo: «Premetto che riguardo all’argomento x ho i miei bias, …».
Quanti tipi di bias esistono?
Esistono svariate decine di bias cognitivi. Qui di seguito ne elencheremo i principali:
bias di conferma: qualunque nuova informazione conferma le nostre convinzioni precedenti, confutando quelle opposte. Questo è in assoluto uno dei pregiudizi più comuni, è infatti fortemente legato alle posizioni religiose e politiche: «Nel valutare notizie e idee, la nostra mente è più attenta a riconoscersi in un gruppo di appartenenza, che rafforza la nostra identità, che non a valutare l’accuratezza delle informazioni» [1]. Inoltre, il bias di conferma va a nozze con le cosiddette bugie blu, restando in tema politico: «I bambini iniziano a dire bugie egoistiche verso i tre anni, quando scoprono che gli adulti non possono leggere i loro pensieri: non ho rubato quel giocattolo, papà ha detto che potevo, mi ha picchiato lui per primo. A circa sette anni iniziano a dire “bugie bianche” motivate da sentimenti di empatia e compassione: che bello il tuo disegno, i calzini sono un bel regalo di Natale, sei divertente. Le “bugie blu” appartengono a una categoria del tutto diversa: sono allo stesso tempo egoiste e vantaggiose per gli altri, ma solo se appartengono al proprio gruppo. Come spiega Kang Lee, psicologo all’Università di Toronto, queste bugie cadono a metà fra quelle “bianche” dette per altruismo e quelle “nere” di tipo egoista. “Si può dire una bugia blu contro un altro gruppo”, dice Lee, e questo rende chi la dice allo stesso tempo altruista ed egoista. “Per esempio, si può mentire su una scorrettezza commessa dalla squadra in cui giochi, che è una cosa antisociale, ma aiuta la tua squadra.” In uno studio del 2008 su bambini di 7, 9 e 11 anni – il primo del suo genere – Lee e colleghi hanno scoperto che i bambini diventano più propensi a raccontare e approvare le bugie blu via via che crescono. Per esempio, potendo mentire a un intervistatore sulle scorrettezze avvenuta durante la fase di selezione delle squadre in un torneo scolastico di scacchi, molti erano abbastanza disposti a farlo, e i ragazzi grandi più di quelli più giovani. I bambini che mentivano non avevano nulla da guadagnare personalmente; lo stavano facendo per la loro scuola. Questa ricerca suggerisce che le bugie nere isolano le persone, le bugie bianche le uniscono, e le bugie blu coalizzano alcune persone e ne allontanano altre. […] Questa ricerca – e queste storie – evidenziano una dura verità sulla nostra specie: siamo creature intensamente sociali, ma siamo inclini a dividerci in gruppi competitivi, in gran parte per il controllo della distribuzione delle risorse. […] “La gente perdona le bugie contro le nazioni nemiche, e dato che oggi in America molte persone vedono quelli dall’altra parte politica come nemici, possono ritenere – quando le riconoscono – che siano strumenti di guerra appropriati”, dice George Edwards, politologo alla Texas A & M e uno dei più importanti studiosi nazionali della presidenza» [2]. Per concludere, questo meccanismo psicologico è direttamente collegato al concetto della post-verità (post–truth), cioè alla non importanza della veridicità di una notizia. Vera o falsa che sia, l’unico fine di quest’ultima è quello di rafforzare i pregiudizi delle persone, è anche per questo motivo che il Debunking (sbufalamento) spesso e volentieri risulta essere inefficace [3]. Circa quest’ultimo punto, un dato teoricamente dovrebbe correggere una nostra errata convinzione, in realtà – paradossalmente – rischia di radicalizzare ulteriormente la stessa (backfire effect). Contestando un’affermazione vi è la possibilità che questa si pianti ancor più a fondo nel cervello (transparency of denial).
Bias di gruppo: bias che ci porta a sopravvalutare le capacità ed il valore del nostro gruppo di appartenenza, attribuendo perentoriamente alla sfortuna gli eventi negativi e al talento quelli positivi (basti pensare alle vittorie e sconfitte nello sport).
Bias d’autorità: detto ache principio d’autorità, porta le persone a credere per filo e per segno a tutto ciò che asserisce chi è in possesso di una laurea od un ottimo curriculum, anche se magari questo fantomatico esperto esce dalla sua sfera di competenze. Per la scienza i dati e gli studi contano più delle opinioni dei singoli individui, laureati o meno che siano. Ne aveva parlato bene il chimico e ricercatore Dario Bressanini nel suo articolo: Il potere mediatico del camice bianco.
Bias della negatività: tendenza a focalizzarsi principalmente sugli avvenimenti negativi, ignorando – almeno parzialmente – quelli positivi. Ciò può portare a sminuire se stessi e ad essere stressati.
Bias dell’ottimismo: l’optimis bias è molto più diffuso di quel che si potrebbe pensare e consiste nel vedere il proprio futuro in maniera molto più rosea di ciò che ci suggerirebbe la razionalità. Questo è una specie di trucco che mette in atto la nostra mente per ricercare serenità in periodi difficili.
Bias di ancoraggio: la prima informazione recepita diventa il capo saldo, l’ancora, del ragionamento successivo. Su di esso fanno leva tutte le persone che vogliono vendere qualcosa: si parte da un prezzo X e dopo si propongono prezzi un po’ più bassi che al confronto del prezzo iniziale (X) sembrano veramente convenienti.
Effetto carovana: rappresenta la tendenza a credere in qualcosa solo perché molte altre persone ci credono (i fedeli di Jim Jones ne sapevano qualcosa…).
Media bias: questo bias colpisce diversi giornalisti e fabbricatori di notizie. Riguarda la selezione delle notizie, delle storie ed il modo in cui esse vengono riportate.
Bias dello status quo: il cambiamento spaventa? Allora si tenta, anche inconsciamente, di prendere le decisioni più facili, quelle che lasciano le cose così come stanno.
Bias del presente: questo bias ci fa prendere delle decisioni che hanno il fine di gratificarci sul momento, in acuto, non valutando la bontà delle nostre scelte sul lungo periodo. Ciò si riflette soprattutto sui nostri acquisti e sul cibo che mangiamo (ruolo edonistico dell’alimentazione).
Bias d’azione: le persone sono portate ad agire anche quando intervenire porta a più svantaggi che altro.
Bias di omissione: al contrario di prima, le persone non agiscono anche se sarebbe logico farlo, probabilmente perché timorose di eseguire una azione (errata) e successivamente rimpiangerla. Venne osservato ciò durante le vaccinazioni che avevano lo scopo di contrastare un’epidemia (maggiori approfondimenti qui).
Bias di proiezione: percezione distolta della realtà. Riteniamo di pensare e vedere le cose sempre nella maniera giusta e ci sembra che anche le altre persone la pensino come noi (falso consenso).
Bias conservativo: ogni novità viene vista con grande sospetto e sottovalutata rispetto alle precedenti convinzioni.
Illusione della trasparenza: illusione di conoscere e percepire con estrema precisione lo stato mentale ed i pensieri di un’altra persona.
Effetto alone: la percezione di alcuni tratti è fortemente influenzata da altre caratteristiche dell’individuo che non hanno niente a che fare con i primi. Ne è un esempio il fatto che alcune persone tendano a considerare come intelligente un uomo solo perché elegante e di bell’aspetto.
Effetto alone inverso: il contrario di prima. Se un individuo od un oggetto ha una caratteristica negativa, allora anche gli altri tratti vengono percepiti come tali.
Ottimismo retrospettivo: visione distorta del passato, che ci porta a considerare e vedere in modo diverso (e migliore) gli avvenimenti che lo riguardano. Questo bias cognitivo è simile alla nostalgia, tuttavia quest’ultima non implica necessariamente una visione falsata. Ergo, si può essere nostalgici senza sopravvalutare a tutti i costi il passato. L’ottimismo retrospettivo è fortemente legato al declinismo, cioè quel bias che ci porta a pensare che tutto vada peggio rispetto ad una volta, anche quando oggettivamente non è così (Eh, ai miei tempi…).
Effetto novità: le nuove informazioni, specialmente se bizzarre e divertenti, vengono memorizzate meglio avendo una priorità nei meccanismo cognitivi della mente umana. Al contrario, le informazioni meno insolite – più “normali” – non vengono viste come prioritarie.
Bias dello scommettitore: errata percezione delle probabilità matematiche. Se alla tombola sono stati estratti di seguito quattro numeri pari, il quinto, seguendo questa (errata) logica, sarà molto probabilmente un numero dispari. Nulla di più sbagliato, le probabilità sono sempre 50 e 50.
Bias dell’angolo cieco: si manifesta nel momento in cui si ha la sensazione che le persone che ci stanno intorno vengano condizionate dai bias molto di più rispetto a noi.
La cosa peggiore è che noi il più delle volte siamo corrotti da bias e prendiamo decisioni sbagliate senza nemmeno rendercene conto…
Fallacie logiche
Argumentum ad hominem: durante una discussione vengono messe da parte le argomentazioni ed i contenuti per concentrarsi su degli attacchi alla persona.
Cherry Picking: il cherry picking è una tattica argomentativa, talvolta involontaria, che consiste nel rafforzare una tesi con l’ausilio di argomentazioni o prove ad essa favorevoli, escludendo a priori tutte quelle sfavorevoli, che pertanto la confuterebbero.
Argumentum ad ignorantiam: “l’assenza di evidenza non è essa stessa un’evidenza“, ma non lo sa chi cade, o ricorre, a questa fallacia logica. Se ad esempio non può essere provata la non esistenza di qualcosa (fantasmi, mostri vari, extraterrestri) ciò non sta a significare che quel qualcosa esista per forza.
Fallacia della brutta china: partendo da una determinata tesi si ipotizza l’accadere di una sequenza di conseguenze (spesso gravi). Il più delle volte queste conseguenze vengono viste come pressoché inevitabili. Ad esempio, se si parte a bere una birra, di lì a poco si diventa alcolizzati. E se si prova uno spinello, sicuramente si passerà poi all’eroina.
Petitio principii: fallacia logica in cui si incappa quando la conclusione di un ragionamento conferma la premessa iniziale dello stesso. “Stephen King è un grande scrittore? Allora il suo ultimo romanzo è un gran bel libro!“.
Post hoc ergo propter hoc: tradotto letteralmente come “dopo di questo, quindi a causa di questo“, consiste nel ricondurre (con causalità) un avvenimento a ciò che è avvenuto subito prima. “Abbiamo pregato per ore ed il Signor Rossi si è risvegliato dal coma? Allora il Signor Rossi è stato salvato dalle nostre preghiere!” ma ovviamente un eventuale nesso temporale non sta necessariamente ad indicare un rapporto causa-effetto (anzi, spesso non è così).
Altre considerazioni
Non sempre è facile accorgersi degli errori insiti nelle proprie logiche argomentative e rivedere le proprie posizioni. Pensiamo ad esempio alla politica: quanto è piacevole discutere con persone del nostro medesimo orientamento politico – che quindi confermano le nostre posizioni di pensiero – e quanto è sgradevole, alle volte perfino irritante, farlo con chi ha idee molto diverse dalle nostre, magari diametralmente opposte o moralmente inaccettabili?
Quando affrontiamo seriamente un dibattito, guardiamo un documentario, leggiamo un libro o ragioniamo su un film appena visto al cinema, il nostro cervello subisce delle modificazioni strutturali. Parliamo ovviamente di cambiamenti minimi, quasi impercettibili, visibili unicamente col microscopio elettronico a scansione. Tutto ciò è garantito dalla plasticità del nostro cervello.
Nessuno è immune ai bias, ci mancherebbe altro. Ma la stessa ricerca scientifica è “livellata” per far sì che certi tipi di studi (i più attendibili) siano, per quanto possibile, esenti dai bias dei pazienti e degli stessi ricercatori.
Per esempio, i trial clinici (studi sperimentali) per contrastare pregiudizi e convinzioni personali di pazienti e ricercatori possono essere di 3-4 differenti tipologie:
Randomizzati: i soggetti sono stati inseriti in maniera del tutto casuale all’interno di uno dei gruppi di studio (gruppo che riceve il trattamento o gruppo placebo).
Cieco: i soggetti dell’esperimento non sanno quale trattamento ricevano.
Doppio cieco: nemmeno i ricercatori sanno qual è il trattamento somministrato a ciascuno dei soggetti dell’esperimento.
Triplo cieco: se oltre ai ricercatori e ai pazienti vi sono degli esaminatori esterni, anche questi non sono a conoscenza della natura della somministrazione del trattamento (placebo oppure no) a cui vanno incontro i pazienti.
Senza questi “trucchi”, la ricerca scientifica non progredirebbe da secoli.
Qui un video di Dario Bressanini molto interessante inerente la “Sindrome da Premio Nobel”, che riprende un po’ il discorso sul principio d’autorità di cui abbiamo trattato prima.
Bias, fallacie e modi di pensare, come già detto, il più delle volte sfuggono al nostro controllo ed alla nostra volontà. Difficilmente riconoscibili per i diretti interessati, è come se rientrassero nell’imponderabile. Sappiamo che ci sono e ci possiamo fare poco, indipendentemente di nostri sforzi.
Dato che tutto ciò è connaturato alla mente umana, non vi è una soluzione, un antidoto, un vaccino. Pesare le proprie parole, mettersi in discussione, non sentirsi sempre e comunque superiori alle altre persone è forse un buon modo per limitare l’influenza dei bias nella quotidianità ma il raggiungimento di una sorta di immunità è impossibile. In fondo, anche la sensazione di essere inscalfibili dai bias è data da un pregiudizio bello e buono (bias dell’angolo cieco).
Si chiama morte improvvisa da sport, abbreviata con MIS ed esiste veramente. Ora, senza farci prendere dal becero sensazionalismo, vediamo in cosa consiste.
Cos’è la MIS?
La morte improvvisa da sport è una morte che avviene entro un’ora dall’inizio dei sintomi acuti, in coincidenza temporale con l’attività sportiva ed in assenza di cause esterne atte di per sé a provocarla.
Lo stretching, pratica tanto conosciuta quanto sottovalutata e trascurata dai più.
Prima di dedicarci a alle tecniche di stretching è però necessario dare alcune basiche definizioni, tre per la precisione.
La prima riguarda la mobilità articolare, da alcuni autori considerata una capacità condizionale, che corrisponde alla capacità di una o più articolazioni di muoversi liberamente entro il proprio range di movimento fisiologico, senza dolori o problemi di alcun genere. La seconda definizione che occorre fornire è quella dell’estensibilità muscolare, ovvero la capacità che ha un muscolo di allungarsi, come prima, entro un limite fisiologico.
Infine, abbiamo la flessibilità, cioè l’unione della mobilità articolare e dell’estensibilità muscolare.
Inoltre, per chi non lo sapesse, c’è il range di movimento (ROM) è l’escursione permessa dalla flessibilità individuale. Che può essere più o meno ampia a seconda della persona ed anche per scelta di quest’ultima. Basti per esempio pensare all’utilizzo di “ROM incompleti” nel bodybuilding (mezze ripetizioni) per mantenere una tensione continua sul muscolo target.
Cenni di fisiologia
Lo stretching, insieme di tecniche volte ad incrementare la flessibilità corporea, si basa sul fenomeno neurofisiologico noto come riflesso miotatico, anche detto da stiramento. I recettori propriocettivi presenti nel muscolo, durante un qualsiasi allungamento inviano dei segnali al sistema nervoso centrale (SNC). I recettori sono i fusi neuromuscolari e gli organi tendinei del Golgi (OTG).
Per farla semplice, durante i primi secondi di allungamento, i fusi neuromuscolari si oppongono allo stretching, inviando segnali al SNC che portano quest’ultimo ad ordinare ai muscoli in questione di contrarsi (riflesso miotatico) in modo da evitare eventuali danni e/o infortuni. Tuttavia, se lo stretching continua e lo stato di allungamento perdura, tramite l’azione degli OTG si verifica una sorta di riflesso miotatico inverso che porta il muscolo a rilassarsi ed allungarsi.
È per questa ragione che nei canonici protocolli di stretching si consiglia di tenere certe posizioni per almeno 10-15 secondi, dato che tempi inferiori ostacolerebbero l’effetto del riflesso inverso citato poco fa, rendendo poco efficace l’allungamento. Va però specificato che se l’estensione muscolare è molto lenta difficilmente i fusi neuromuscolari si attivano.
I fattori che influenzano la flessibilità che, ovviamente, è molto soggettiva e variabile, sono principalmente i seguenti:
Estensibilità dei tendini, dei legamenti, delle capsule articolari e della pelle
Temperatura ambientale e corporea*
Livello di attività fisica (se esposti ad escursioni articolari limitate, i tessuti connettivi tendono a diventare meno flessibili).
*a causa della maggior temperatura corporea, i muscoli risultano essere più flessibili dopo il riscaldamento, pertanto generalmente si consiglia di effettuare lo stretching dopo il riscaldamento iniziale.
Le variazioni della flessibilità dipendono principalmente da un paio di fattori, due adattamenti tissutali: elasticità e plasticità. La prima consiste nella capacità del muscolo di ritornare alla lunghezza di riposo dopo l’allungamento. La seconda invece, è la tendenza ad assumere e mantenere una nuova e maggiore lunghezza dopo un allungamento. Il muscolo ha proprietà elastiche, legamenti e tendini hanno proprietà sia elastiche che plastiche.
In altre parole, se il fine è quello di incrementare la flessibilità, tramite svariate tecniche di stretching bisogna cercar di far sì che la plasticità prevalga sull’elasticità.
Maggior flessibilità = plasticità > elasticità
Un po’ come per crescere muscolarmente, in quest’ultimo caso occorre che l’anabolismo sia maggiore del catabolismo.
I benefici dello stretching, a grandi linee, sono quelli che seguono: aumento della flessibilità, prevenzione infortuni (è giusto specificare che le evidenze non così solide), miglioramento della circolazione sanguigna, stimolazione della lubrificazione articolare, effetti rilassanti e miglioramento generale della performance (in cronico). Ovviamente possono esserci anche degli effetti negativi, di questi però ne parleremo più avanti, fra qualche riga.
Tipologie di stretching
Qui di seguito potete trovare le forme più note ed efficaci di stretching.
Stretching statico (attivo e passivo): lo stretching statico attivo è il classico stretching che consiste nel raggiungere lentamente delle posizioni di allungamento e mantenerle per 15-30 secondi (il tutto in maniera autonoma). Invece, quello passivo viene effettuato grazie all’aiuto di un compagno di allenamento che tende a “forzare” l’allungamento, incrementandolo (fig. sotto).
Stretching statico passivo
Stretching dinamico (attivo e balistico): stretching che, non essendo statico, fa uso di movimenti di molleggio, slanci e quant’altro. Quello attivo è molto controllato, il balistico no (quest’ultimo comprende slanci e balzi più rapidi e intensi).
Essendo, almeno in linea teorica, piuttosto simili, alcuni autori non fanno distinzioni (Weineck J.) e considerano come stretching dinamico (o balistico) tutte le forme di allungamento che prevedono dei movimenti più o meno ampi.
I principali tipi di stretching (da Page P. – Current concepts in muscle stretching for exercise and rehabilitation, 2012, modificato)
Stretching PNF: lo stretching PNF (Proprioceptive Neuromuscolar Facilitation), molto in voga negli ultimi anni, è un tipo di allungamento che punta ad incrementare la flessibilità tramite delle contrazioni isometriche (quindi che avvengono senza un effettivo accorciamento del muscolo).
Weighted/Loaded stretching: in maniera poco tecnica potremmo nominare questa metodica come uno stretching zavorrato, che quindi si avvale di sovraccarichi per migliorare la flessibilità generale. Il “weighted stretching” è uno stretching relativamente giovane e che non ha alle spalle un’ampia letteratura scientifica, pertanto viene difficile approfondirlo e compararlo con gli allungamenti più tradizionali.
Isometria in allungamento
Christian Thibaudeau, coach di fama internazionale, sostiene che con lo stretching zavorrato sia possibile allungare i muscoli e, al contempo, massimizzare l’ipertrofia muscolare. Ma il sospetto più logico è che questo allungamento sia maggiormente utile per la crescita del fisico che per la flessibilità.
Per ulteriori approfondimenti vi rimandiamo ad un suon articolo pubblicato su T Nation.
Alcune considerazioni
Una importante review sistematica del 2017 ha preso in esame ben 28 studi riguardanti lo stretching e nessuno di questi ha mostrato effetti negativi dello stretching sulla performance [1]. Anzi, uno di questi riguardava sedici pesisti, con un carico massimale (1RM) di panca piana medio di circa 130 kg ed ha messo in mostra un lieve incremento dei carichi sul bilanciere [2]. Si è visto inoltre come su soggetti non allenati lo stretching possa aumentare in modo abbastanza significativo la forza muscolare [3].
E’ di fondamentale importanza la tempistica con cui viene effettuato l’allungamento. Se non si vuole rischiare di vedere un peggioramento delle prestazioni, è buona cosa evitare di eccedere con lo stretching se questo viene svolto subito prima di una seduta di allenamento. Infatti, come si è visto in decine di studi raccolti in una nota review [4], lo stretching statico spesso e volentieri, in acuto, porta a peggioramenti nelle performance di forza e potenza. Risultati simili li ha dati un lavoro più recente condotto su giocatori professionisti di football [5].
Behm D. G. et al. (2011)
Behm D. G. et al. (2011)
Behm D. G. et al. (2011)
Mode a parte, uno studio ben condotto pubblicato sulla rivista scientifica Physical Therapy in Sport, non ha trovato metodologie come lo stretching PNF particolarmente superiori rispetto al canonico allungamento statico [6]. Riguardo a questa faccenda, la comunità scientifica non ha ancora una una posizione unanime, servono altri studi per sperare di avere delle certezze.
Inoltre, lo stretching – in generale – non sembra essere in grado di influire significativamente sul recupero muscolare, al contrario di ciò che è credenza comune [7]. Ma questa è una questione assai intricata, di cui magari parleremo più nel dettaglio in futuro con altri articoli.
«Una […] ricerca di Kay, A. D., and A. J. Blazevich del 2012, ha affermato che lo stretching statico per un totale di 45 sec può essere utilizzato come routine senza il rischio di una diminuzione significativa nella performance delle attività forza o di velocità. Per tempi di allungamento più lunghi(ad esempio, 60 s) ci sono maggiori probabilità di causare una piccola o moderata riduzione delle prestazioni» [8].
Applicazioni pratiche – linee guida
Bisogna dedicare allo stretching più sedute settimanali per fare sì che questo sia realmente allenante; durante l’allenamento della flessibilità dobbiamo percepire una certa tensione muscolare ma non del dolore, in quest’ultimo caso andiamo incontro a più rischi che benefici.
Si consigliano almeno un paio di esercizi per ogni grande gruppo muscolare, con delle tenute (ripetute) di una certa durata. Per essere più precisi…
Frequenza: ≥3 volte a settimana
Ripetizioni: 3-5 per ogni posizione
Tempo: tenere ogni posizione per 15-45 secondi
Quanto riportato sopra, valevole per lo stretching statico, può essere eseguito nelle classiche sedute di allenamento, oppure in sedute a parte.
Lo stretching dinamico è invece indicato per essere eseguito prima che inizi l’allenamento vero e proprio, dopo un buon riscaldamento.
Conclusioni
Lo stretching, da alcuni sottovalutato da altri sopravvalutato, è indubbiamente un qualcosa che va fatto. Non esiste una ricetta unica, le tipologie sono diverse e lo stretching andrebbe prescritto da persona a persona, in base allo stato di salute, la condizione fisica, l’obiettivo, lo sport praticato, e così via.
Nessun dubbio sul fatto che, se eseguito a caso, possa avere più svantaggi che benefici. Ma in quel caso la colpa è del singolo individuo o dell’allenatore incompetente, non dello stretching in sé.
R. D’Isep e M. Gollin – Fitness e muscolazione (2001)
Ganzini A. – Flessibilità e mobilità articolare (Dispense FIPE)
Segina M. – Gli effetti “reali” dello stretching (link)
Pansini L. – Stretching: una retrospettiva dalla ricerca (Body Comp Academy, 2017)
Leite T. B. et al. – Effects of Different Number of Sets of Resistance Training on Flexibility (2017)
[1] Medeiros D. M. et al. – Influence of chronic stretching on muscle performance: Systematic review (2017)
[2] Wilson G. J. et al. – Stretch shorten cycle performance enhancement through flexibility training (1992)
[3] Nelson A. G. et al. – A 10-week stretching program increases strength in the contralateral muscle (2012)
[4] Behm D. G. et al. – A review of the acute effects of static and dynamic stretching on performance (2011)
[5] Kurt C. – Comparison of the acute effects of static and dynamic stretching exercises on flexibility, agility and anaerobic performance in professional football players (2016)
[6] Azevedo D. C. et al. – Uninvolved versus target muscle contraction during contract: relax proprioceptive neuromuscular facilitation stretching (2011)
[7] Herbert R. D. -et al. – Stretching to prevent or reduce muscle soreness after exercise (2007)
[8] Ferrari M. – Stretching: cosa dicono le ricerche (IlCoach, 2015)
Quello di cui andremo a parlare oggi riguarda uno studio che ha preso in esame tre tipi di trazioni, analizzando le differenze nell’attivazione muscolare (misurate tramite elettromiografie, EMG) [1].
Avevamo giù trattato l’argomento in un episodio del nostro Podcast, prendendo spunto da un post di Alessio Ferlito. Ma ora veniamo a noi… (altro…)
Il cervello umano è una macchina tanto affascinante quanto complessa. Da secoli infatti attira l’interesse di medici, scienziati, filosofi, psicologi e via discorrendo. Proprio a causa di questa sua complessità attualmente non conosciamo bene tutti i meccanismi che permettono a questa incredibile macchina di funzionare.
Appunti e disegni di Leonardo Da Vinci
Anatomia
Il cervello, posizionato nella scatola cranica, ha un peso che si aggira intorno al chilogrammo e mezzo (1,5) ed ha un volume di circa 1100-1300 centimetri cubici (ovviamente con l’età questi numeri possono lentamente cambiare).
Ogni atlante di anatomia che si rispetti cita prima di tutti l’encefalo, ovvero l’insieme del cervello, cervelletto e midollo allungato. A differenza di quello che credono alcuni, va infatti specificato che encefalo e cervello non sono la stessa cosa.
Per il resto, la struttura anatomica del cervello dell’Homo Sapiens è la seguente:
Due macro-aree: telencefalo e diencefalo;
Sei lobi del telencefalo: lobo frontale, parietale, occipitale, temporale, limbico e dell’insulina;
Altri piccoli segmenti anatomici contenuti dal diencefalo: talamo, epitalamo, metatalamo, ipotalamo, subtalamo.
La sostanza grigia che tipicamente dà colore ai cervelli non vivi, altro non è che corteccia cerebrale, la parte rugosa ed più esterna del telencefalo, ricca di neuroni, cellule della glia e fibre nervose (senza mielina). Essa, da sola, rappresenta circa il 90% del peso complessivo del cervello. Com’è ben noto, questa corteccia è di fondamentale importanza perché ha a che fare con il linguaggio, le capacità di pensiero, la memoria, la coscienza e l’attenzione.
Come mostrato nell’immagine riportata sopra, la struttura del cervello è incredibilmente articolata, non facile da spiegare. Per questo motivo adesso andremo a vedere alcune delle caratteristiche più interessanti di esso, senza tuttavia descrivere troppo nel dettaglio ogni singolo componente di questa maestosa macchina. Per ulteriori approfondimenti vi rimandiamo ai testi consigliati al fondo dell’articolo.
Predizione
Il nostro cervello, anche in situazioni di completa calma e tranquillità, è costantemente impegnato a cercare di predire il futuro. Non a caso Stephen Hawking definiva l’intelligenza come «la capacità del cervello di predire il futuro attraverso analogie con il passato». E proprio dalla predizione pare dipendano pensieri, emozioni, percezioni, ricordi e altro ancora.
In pratica, è come se il cervello cercasse di intuire in anticipo cosa accadrà in un futuro più o meno prossimo in modo da farsi trovare pronto ad ogni imprevisto. Ciò è probabilmente legato a ragioni evolutive, alla sopravvivenza della specie umana. Quando noi camminiamo il cervello predice a ogni passo quando il piede raggiungerà il suolo. Privati di questo meccanismo di predizione, probabilmente non saremmo neanche in grado di camminare per pochi metri senza cadere, in special modo se la superficie a cui il nostro piede va in contro è irregolare.
Memoria
La memoria, come altre caratteristiche del cervello ha avuto una grande importanza durante il processo evolutivo dei Sapiens. Tramite essa infatti abbiamo tramandato linguaggi, usanze, racconti, tratti culturali e informazioni necessarie per sopravvivere. Nei millenni si è infatti distinta come meccanismo della paura (“Meglio non addentrarsi in quella foresta, ci sono dei pericoli“), come elemento sociale (gerarchie familiari, alberi genealogici), motorio e soggettivo (la personalità).
Esistono principalmente due tipologie di memoria, quella a breve termine e quella a lungo termine. La prima dura poco, una manciata di secondi. L’altra rappresenta praticamente tutto quello che sappiamo: lingue, volti, nomi, luoghi, nozioni, ideologie, numeri, e così via.
I ricordi tendono ad imprimersi bene nella nostra memoria quando da parte nostra c’è una certa attenzione (parleremo meglio di ciò fra qualche paragrafo), meglio ancora se li associamo a qualche avvenimento.
Ad esempio quanti bambini e ragazzini ricordano dell’interruzione di una puntata della Melevisione durante l’attentato dell’11 settembre 2001?
Ma come funziona l’accesso ai ricordi? «Il fenomeno del recupero permette di andare a riprendere le informazioni immagazzinate nelle memorie permanenti. Il recupero è una modalità attiva e volontaria che talvolta richiede notevole sforzo. Il riconoscimento è il più delle volte un meccanismo passivo. Anche la semplice evocazione di una parola può attivare l’intero orizzonte a cui appartiene o facilitarne il riconoscimento e il recupero. Nel complesso le memorie permanenti funzionano per associazioni, che sono il meccanismo principale dei processi mnemonici» [1]. Le aree deputate al recupero dei ricordi sono quelle del lobo temporale, lobo occipitale e sistema limbico (insieme di strutture cerebrali collegate al lobo limbico).
Terry Sejnowski, professore del Salk Institute in California, facendo un raffronto con la matematica binaria dei computer, stima che la memoria totale del nostro cervello sia indicativamente di un milione di gigabyte (1 Petabyte). Non è da escludere che la nostra memoria totale possa anche essere superiore, dato che tramite meccanismi associativi è possibile salvare una quantità esorbitante di dati.
Acquisire ed elaborare nuove informazioni, nuove sensazioni, è tra l’altro un ottimo modo per contrastare l’invecchiamento neuronale.
Plasticità
La plasticità è la capacità (innata) del cervello di modificare la sua struttura nel tempo. Le esperienze sensoriali cambiano fisicamente questa struttura, ciò è possibile tramite l’azione dei neuroni, grazie agli assoni, ai dendriti ed alle spine di questi ultimi.
In questa rappresentazione di neurone motorio possiamo osservare bene i dendriti e l’assone.
Quando affrontiamo seriamente un dibattito, guardiamo un documentario, leggiamo un libro o ragioniamo su un film appena visto al cinema, il nostro cervello subisce delle modificazioni, che sono appunto modificazioni strutturali. Parliamo ovviamente di cambiamenti minimi, quasi impercettibili, visibili unicamente con sofisticati microscopi.
Recenti studi suggeriscono che siano gli astrociti, particolari proteine della neuroglia, a garantire al cervello una buona plasticità (e non solo) [14,15].
Questi mutamenti, per quanto lievi, ci accompagnano per tutto il corso della vita.
Intelligenza
Se volessimo parlare come si deve dell’intelligenza, cosa sicuramente non facile, potremmo definirla come l’insieme dell’apprendimento e comprensione, della consapevolezza di sé, della creatività e della capacità di adattarsi e cavarsela anche nelle situazioni più avverse e intricate.
Howard Gardner, psicologo di fama mondiale, distingue ben 9 tipi di intelligenza: intelligenza linguistica, logico-matematica, spaziale, corporeo-cinestetica, musicale, interpersonale, intrapersonale, naturalistica ed esistenziale. Esse sono allenabili e se non utilizzate, col passare del tempo, anche nei soggetti più fortunati possono decadere.
Il famigerato quoziente intellettivo (QI) non è un parametro attendibile per valutare l’intelletto di un soggetto, dato che si riferisce principalmente all’intelligenza logico-matematica, quindi teoricamente solo a 1/9 dell’intelligenza di un essere umano. A riprova di quanto affermato prima circa l’allenabilità della mente, l’attuale popolazione terrestre è mediamente più abile nelle questioni di natura logico-matematica rispetto a quella dell’inizio del ventesimo secolo, lo testimoniano i differenti valori del QI osservati di generazione in generazione (Alfred Binet sperimentò per primo il test nel 1904). Questo innalzamento del QI è detto effetto Flynn, dal nome del suo scopritore. Tuttavia, è bene specificare che riguardo a questo effetto ci sono alcune controversie [5].
L’uomo, specialmente da bambino, va a inconsapevolmente a lavorare sulle proprie capacità intellettive. Lo fa per esempio quando sta in mezzo agli altri bambini all’asilo, alla scuola primaria, relazionandosi con gli adulti, giocando, studiando, maneggiando dispositivi tecnologici.
Come alcuni già sapranno, l’intelligenza è anche una questione genetica. Ebbene sì, la natura spesso è ingiusta, infatti in base alla presenza o meno di alcuni determinati geni ci sono persone più portate ad essere intelligenti ed altre meno. La ricerca scientifica ha già individuato più di mille geni – per la precisione 1016 – coinvolti nello sviluppo dell’intelligenza [2]. Volendo volgarizzare il tutto, si è visto come con i “geni giusti” sia più facile avere una marcata intelligenza e un organismo in grado di contrastare efficacemente l’insorgere di patologie quali l’Alzheimer, il disturbo da deficit di attenzione e iperattività (ADHD). Di contro, sono 599 i geni identificati che stanno dietro alla stabilità emotiva e alcune varianti di questi geni espongono a una elevata propensione alla depressione e schizofrenia [3].
Attualmente si stima che lo sviluppo delle capacità intellettive dipenda per il 53% da questioni legate alla genetica individuale [4].
La notizia per qualcuno potrebbe essere una doccia fredda ma girarsi dall’altra parte non avrebbe senso. La natura umana è questa, non bisogna gioire o disperarsi ma solo accettare i fatti.
Sensi
Voi tutti conoscerete i sensi, no? I soliti cinque: vista, gusto, tatto, udito e olfatto. Sapete anche che non è del tutto corretto limitarsi a citare solamente questi cinque?
Esistono infatti anche altri sensi un po’ meno noti, il cui funzionamento è garantito da specifici organi che mandano segnali al cervello. Per esempio siamo dotati di propriocezione, ovvero la capacità di percepire e riconoscere i segmenti corporei nello spazio, la nocicezione (senso del dolore), la percezione delle sensazioni termiche (termocezione), eccetera.
In quanto ad efficienza dei sensi l’uomo non primeggia in natura. Esistono infatti molti animali in grado di cogliere suoni a frequenze a noi impercettibili, o vedere cose che noi non riusciamo a visualizzare (luce ultravioletta). Se pensiamo agli affascinanti pipistrelli: «…oltre a emettere un’ampia gamma di segnali sonori per comunicare con i propri simili, essi utilizzano i suoni per orientarsi nello spazio e cacciare. Grazie alla ecolocalizzazione, una specie di sonar biologico, i pipistrelli lanciano segnali sonori a frequenze specifiche e ascoltano gli echi che questi producono rimbalzando sulle superfici circostanti per individuare gli oggetti e le prede» [6].
Altre informazioni sul sistema di ecolocalizzazione le potete trovare qui
Il sistema di “biosonar” utilizzato dai pipistrelli si può trovare anche in altri mammiferi come i delfini. Inoltre, alcune macchine costruite dall’uomo come i sottomarini ricorrono all’ecolocalizzazione.
Emozioni e sentimenti
L’essere umano è in grado di provare emozioni e sentimenti. Questi non sono così facilmente catalogabili, sono numerosi (molte decine) e sovrapponibili.
Dietro alla capacità di provare amore, gelosia, felicità, paura, pietà, odio, tristezza, nostalgia, pessimismo, empatia, crudeltà, panico, simpatia, ecc. vi sono ragioni evolutive più o meno note.
Volendo essere sintetici, fin dall’antichità l’amore è servito all’uomo per riprodursi e dar vita a famiglie numerose, garantendo la sopravvivenza della specie. Come spiegato nel bellissimo libro Sapiens, scritto dallo storico Yuval Noah Harari, vi sono delle prove abbastanza chiare che testimoniano l’empatia e la solidarietà verso i più deboli (soggetti disabili) provate dai Neanderthal oltre 100.000 anni fa. Questa specie umana estintasi da molto tempo (circa 40.000 anni), grazie all’importante e pesante cervello riusciva a provare forti sentimenti, tanto da legarsi e riprodursi con alcuni Homo Sapiens (teoria della fusione) [7,8,9].
Ma se l’uomo è sopravvissuto tanto deve ringraziare anche un’emozione primaria di pericolo come la paura, tramite essa si è tenuto lontano da molti pericoli mortali. E con la simpatia, l’empatia, la felicità, è riuscito a convivere in famiglie, gruppi, villaggi e città via via sempre più grandi e organizzati.
Ovviamente tutto ciò è assai più complesso di come riportato qui, per ogni emozione e/o sentimento ci sono un’infinità di reazioni chimiche che avvengono all’interno del nostro organismo, dall’ossitocina e la dopamina per l’amore, al testosterone e l’adrenalina per l’aggressività, e così via.
Coscienza
Come tutte le altre cose elencate in questo articolo, anche la coscienza non è facilmente definibile, ma va fatto comunque un tentativo.
La coscienza è la percezione di sé, dei propri pensieri, delle proprie azioni e dell’ambiente circostante. Essa è attiva quando siamo svegli ed entra in una sorta di stand-by quando dormiamo. Risulta difficilissimo studiarla poiché non stiamo parlando di un elemento fisico da vivisezionare e mettere sotto la lente di un microscopio. Per questa ragione i progressi scientifici circa questo argomento sono piuttosto lenti.
A differenza di quel che si credeva in passato, l’uomo non è l’unico mammifero dotato di coscienza. Si è infatti osservato che, a livelli diversi, anche altri mammiferi abbiano coscienza [10]. Ne sono un esempio i delfini, elefanti, scimpanzé e i gorilla. Com’è facilmente intuibile, è l’Homo Sapiens l’essere vivente che gode della più elevata coscienza, paradossalmente questo non implica necessariamente che le persone mettano sempre la giusta dose di coscienza nelle loro azioni.
Attenzione e apprendimento
Fin dalla nascita il cervello umano è programmato per concentrarsi e prestare attenzione ai più svariati stimoli, rispondendo ed imparando qualcosa da questi ultimi.
Noi, quasi fossimo un computer od uno smartphone, siamo dotati di una specie di multitasking. Per chi non lo sapesse, in informatica il multitasking permette di eseguire più programmi contemporaneamente. Tuttavia, la versione umana di questa funzionalità è decisamente limitata, pertanto non è possibile riuscire a gestire con estrema efficienza più cose simultaneamente. Pinco Pallino può benissimo ascoltare musica e contemporaneamente leggere la Critica della ragion pura di Kant, ma nel caso volesse capire al meglio ciò che c’è scritto nel testo o concentrarsi per bene sulle liriche delle canzoni ascoltate, dovrà necessariamente fare una cosa o l’altra, non entrambe in contemporanea. A riprova di quanto appena detto, esiste un bug dell’attenzione, detto attentional blink, il quale porta ad un breve spegnimento dell’attenzione quando si passa da uno stimolo dell’interesse all’altro [11], questo spegnimento mediamente dura circa un secondo (1″). Come riportano i ricercatori Paola Sessa e Roberto Dell’Acqua [12], se abbiamo due stimoli visivi (T1 e T2) presentati in rapida successione, indagando sui limiti cognitivi insiti nell’uomo scopriamo che: «I risultati ottenuti […] suggeriscono con forza che uno o più stadi di elaborazione di T1 interferiscono con l’elaborazione di T2 se l’intervallo temporale tra T1 e T2 (stimulus onset asynchrony; SOA) è inferiore ai 500-600 ms. Questo fenomeno è stato denominato Attentional Blink (AB)».
Quando noi decidiamo di prestare attenzione a qualcosa di specifico si parla di attenzione volontaria. Si parla invece di attenzione automatica quando ad esempio sentiamo un improvviso boato e ci voltiamo immediatamente in direzione del suono appena udito. Il sistema dell’attenzione è regolato dalla dopamina e talvolta, per questioni genetiche non ancora del tutto definite, questo sistema può essere difettoso. Stiamo infatti alludendo al già citato ADHD (disturbo da deficit di attenzione e iperattività). Esso si manifesta nei primi anni di vita e generalmente scompare con il raggiungimento dell’età adulta, ma in una stretta cerchia di casi può persistere anche nelle persone più grandi.
Benché non sia ancora chiaro se c’è esiste una distinta sede anatomica che regola l’attenzione, è stata notata un’intensa attivazione della corteccia prefrontale (parte anteriore del lobo frontale del cervello) e del lobo temporale correlata, appunto, all’attenzione.
Riguardo invece all’apprendimento, possiamo affermare senza alcun timore di smentita che nessun essere vivente è in grado di apprendere quanto l’Homo Sapiens. Da quando viene al mondo, fino al giorno della sua morte, egli continua ad analizzare informazioni, immagazzinando ed apprendendo nuove cose.
Sembrerà un’assurdità ma il cervello impara meglio se è convinto di poter imparare meglio. Più un determinato argomento è complicato e più occorre impegnarsi portando il cervello fuori dalla sua comfort zone.
Ripetere, ripetere e ripetere è il modo con cui si possono apprendere nuove nozioni. In questo processo sono coinvolte le sinapsi, i neuroni e le cellule gliali.
L’apprendimento, anche motorio, ha delle fasce d’età in cui è facilitato (età prescolare, 3-6 anni) ma questa non è una buona scusa per gettare la spugna. Sia che si parli di apprendere una nuova lingua o iniziare a fare seriamente attività fisica.
Dei neuroni speciali?
Le capacità cognitive dell’uomo sono superiori a quelle degli altri mammiferi grazie alla sua corteccia cerebrale assai sviluppata, alla sua incredibile propensione alla socialità ed alla competitività che l’hanno distinto da tutto il resto fin da quando i sapiens fecero la loro comparsa sulla Terra, nella seconda metà del pleistocene.
Una certa superiorità del nostro cervello potrebbe essere data da dei particolari neuroni non presenti negli altri mammiferi, i neuroni rosehip(foto sopra). Questi sono stati recentemente identificati da dei ricercatori Ungheresi e Americani nel primo dei sei strati della corteccia cerebrale, lo studio è stato pubblicato sulla rivista Nature [13].
Tanto per fare un esempio, potrebbero essere proprio queste cellule cerebrali le responsabili della coscienza umana. Tuttavia, questa scoperta deve ancora essere confermata da studi più autorevoli, nulla è ancora certo.
Approfondimenti
Ecco alcuni articoli e libri consigliati per chi volesse approfondire questi argomenti:
[1] Vincent J. D. – Qualche breve lezione sul cervello. Per capire l’oggetto più complicato che sia mai stato costruito (2016)
[2] Savage J. E. et al. – Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence (2018)
[3] Nagel M. et al. – Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways (2018)
[4] Sniekers S. et al. – Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence (2017)
[5] Trahan L. et al. – The Flynn Effect: A Meta-analysis (2014)
[6] Artana S. – Quando i neuroni fanno “shhh”: come i pipistrelli selezionano i suoni che vogliono sentire (Focus, 2010)
[7] Le Scienze – Più di 100.000 anni fa l’incrocio tra sapiens e Neanderthal (2016)
[8] Gaianews.it – Scoperto primo ibrido tra Neanderthal e Homo Sapiens (2013)
[9] Gaianews.it – Perché Homo sapiens è sopravvissuto agli altri ominidi (2018)
[10] Kirkwood J. et al. – Consciousness, cognition and animal welfare (2001)
[11] Raymond J. E. et al. – Temporary suppression of visual processing in an RSVP task: an attentional blink? (1992)
[12] Sessa P. et al. – Il fenomeno “Attentional Blink” (2008)
[13] Boldog E. et al. – Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type (2018)
[14] Elena Blanco-Suarez et al. – Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors (2018)
[15] Le Scienze – Un cervello plastico grazie agli astrociti (2018)
Magrini M. – Cervello. Manuale dell’utente. Guida semplificata alla macchina più complessa del mondo (2017)
Rossi A. F. et al. – The prefrontal cortex and the executive control of attention (2009)
James Flynn – Why our IQ levels are higher than our grandparents’ (TED, 2013)
Le Scienze – Le basi genetiche dell’intelligenza e della stabilità emotiva (2018)
Le Scienze – Geni e intelligenza: un rapporto sempre più complesso (2017)
Nel vasto mondo degli sport da combattimento e delle arti marziali, discipline come la lotta (wrestling), grappling (no-gi), il classico brazilian jiu jitsu (gi), il judo, ecc. rappresentano una categoria differente rispetto alle solite specialità fatte principalmente di percussioni (striking).
Non occorre di certo una perspicacia fuori dal comune per intuire che le capacità condizionali e le richieste energetiche a cui l’organismo va incontro durante una gara di grappling non siano le medesime necessarie per competere nel pugilato piuttosto che nella kickboxing.
In questo scritto tratteremo proprio di fisiologia sportiva applicata alla categoria di sport da combattimento (SdC) citata ad inizio articolo. Buona lettura!
Introduzione
Chiunque abbia mai calcato, anche solo a livello amatoriale, un tatami od una gabbia sa bene quanto sia duro ed energeticamente dispendioso allenarsi e magari anche gareggiare negli sport da combattimento. Le sottomissioni del grappling, dagli strangolamenti alle leve articolari, le mille proiezioni della lotta libera e greco-romana, le fasi di transizione, i passaggi di guardia.
Proprio perché sono molto duri, occorre essere fisicamente ben preparati, oltre che tecnicamente anche fisicamente. Esistono cinture nere che in quanto a strength and conditioning sono poco più che cinture gialle e cinture gialle che dal punto di vista atletico sono cinture nere.
Ecco, per quanto possibile, bisogna tentare di ottimizzare il tutto. Cinture nere nello sport e cinture nere nella preparazione atletica.
Diventare eruditi circa il condizionamento fisico per gli SdC non è facile, soprattutto se non si è poliglotti e non si hanno basi di alcun tipo. Questo articolo può essere un buon punto di partenza.
Sistemi energetici e capacità condizionali
Come già accennato in precedenza, vi è una marcata differenza fra i livelli di capacità condizionali (forza, resistenza, velocità) e di utilizzo dei substrati energetici richiesti dal corpo di un lottatore, rispetto a quelli necessari ad uno striker per essere performante.
La tabella riportata sopra, presa dal libro “Ultimate Conditioning for Martial Arts“, mostra a grandi linee i tempi di lavoro (in competizioni ufficiali) di tre SdC legati da alcune similitudini.
In tutti e tre è ovviamente richiesta una solida base di forza massimale, una buona velocità, potenza e resistenza. Inoltre, nel wrestling e grappling/bjj ricopre una certa importanza l’efficienza del sistema aerobico. Il quale ha il compito di smaltire e riconvertire i prodotti di scarto del metabolismo anaerobico lattacido. Per resistere invece all’accumulo di acido lattico è importante possedere una buona resistenza anaerobica lattacida e alattacida (potenza e capacità a/lattacida).
Logicamente, dato che i sistemi energetici lavorano in contemporanea (fig. sotto), vi è una componente energetica aerobica anche in sport come il judo, anche se minore (raggiunge invece il suo apice in SdC come la boxe professionistica).
Le differenze inerenti l’utilizzo delle capacità condizionali negli SdC dipendono principalmente dalla velocità con cui una forza viene applicata. Con lo sviluppo di tensione, nel muscolo si verifica un accorciamento, questo accorciamento avviene in una determinata quantità di tempo, per cui, secondo la relazione fisica spazio/tempo si può riuscire a quantificare il tempo in cui questa contrazione avviene. Per sviluppare la massima forza esprimibile necessaria per un determinato movimento occorre tempo. Il tempo per raggiungere il picco di forza varia da persona a persona (leve, coordinazione inter e intramuscolare, fibre muscolari, capacità di reclutamento) e dal tipo di movimento.
Normalmente il tempo necessario per raggiungere il valore del picco della forza (F) è poco superiore a 0,4 secondi. Se paragoniamo gli 0,4″ con il tempo necessario per sviluppare forza in alcuni sport, capiamo perché in alcuni di essi l’allenamento con alti sovraccarichi a basse velocità è un importante aspetto della preparazione atletica e in altri no.
Specialmente nelle discipline di velocità, il tempo disponibile per imprimere forza (spinta a terra) è brevissimo (tabella), ciò ci dà un’idea delle priorità della preparazione atletica per questi sport.
Tanto per essere più chiari, in tutti gli esempi riportati sopra, potranno essere raggiunti livelli di forza più o meno alti ma mai massimali. Non è un caso che i lanciatori del giavellotto allenino molto meno la forza massimale (spostamento di alti sovraccarichi a basse velocità), rispetto a chi fa lancio del peso (il giavellotto è molto più leggero del peso, pertanto può essere espressa tramite il lancio di esso una minor Fmax).
Allo stesso modo, il jab di un abile boxeur (colpo dritto e rapido) si muove con una velocità ben diversa rispetto ad una normale proiezione di un lottatore (hip toss, double leg, single leg…). Quindi a livello fisiologico, fisico e biomeccanico cosa succede? Se siete stati attenti l’avrete sicuramente capito. Il pugile non esprimerà mai e poi mai tutta la sua forza in quel colpo, è impossibile, i suoi segmenti corporei ed i relativi muscoli si muovono troppo velocemente, non c’è il tempo necessario per sviluppare grandi livelli di forza. Al contempo, il lottatore portando un takedown sarà un po’ più lento ma riuscirà ad imprimere molta più forza in quella tecnica.
Attorno a questi tediosi ma importanti concetti gira tutto il discorso sulle giuste capacità condizionali per gli sport da combattimento. Bisogna quindi fermarsi un attimo a riflettere per cercare di comprendere cosa serve per lo sport che si pratica.
Andando al nocciolo della questione, un lottatore o grappler deve essere rapido per afferrare un arto dell’avversario oppure per fare un’entrata alle gambe, tuttavia per rendere efficace il proprio takedown deve obbligatoriamente imprimere una certa forza nel gesto atletico, specialmente se l’avversario o lo sparring partner è pesante ed oppone molta resistenza.
Per questa ragione, a causa delle richieste di forza ed alle fasi statiche – basti pensare ad un fighter che prova disperatamente ad uscire da una brutta situazione come la monta od una sottomissione quasi completamente chiusa – ogni grappler e lottatore se vuole avere delle buone prestazioni deve necessariamente allenare ciò che segue:
Forza massimale
Forza resistente
Forza esplosiva/potenza
Velocità/rapidità
Resistenza (aerobica ed anaerobica)
Ai lettori più nerd, facciamo notare come la differenza tra la forza di un jab (Fm, forza massimale raggiunta in determinate condizioni) e quella di un potente takedown (Fmm, il più elevato dei valori di forza massimale raggiunti nelle condizioni più favorevoli) è misurabile ed ha un nome: deficit di forza esplosiva (explosive strength deficit – ESD).
Dopo tanta teoria passiamo a dare qualche indicazione su come mettere in pratica quanto detto finora.
Mettiamo caso che un atleta di buon livello abbia un match importante e circa quattro mesi di tempo per allenarsi, dividiamo quindi il tempo totale a disposizione (macrociclo) in 3 mesocicli.
Sopra, le tre principali fasi temporali di una periodizzazione.
Tenendo a mente quali sono le priorità di allenamento elencate poco fa, proviamo a mettere nero su bianco una successione dei mesocicli ed a seguirla.
Mesociclo n.1 (microcicli 1-2-3-4)
Mesociclo n.2 (microcicli 5-6-7-8)
Mesociclo n.3 (microcicli 9-10-11-12)
Mesociclo n.4 (microcicli 13-14-15-16)
Come molti già sapranno la periodizzazione, a seconda della tipologia di lavoro svolto, è suddivisibile in tre macro-aree: periodo di preparazione generale (GPP) – Periodo specifico (PPS) – Periodo competitivo (PC) – Periodo transitorio (PT).
Generalmente la preparazione generale dura più di quella specifica (rapporto temporale di 2:1). Come facilmente intuibile dai nomi, il GPP consiste in lavori più aspecifici, dissimili da ciò che poi verrà fatto in gara (un lottatore sul tatami di gara non solleva bilancieri). Invece, la seguente PPS si pone come via di mezzo fra un lavoro aspecifico e la competizione vera e propria, durante il periodo di preparazione specifica vengono chiamati in causa gesti ed esercizi un po’ più simili a quelli dello sport in sé (stessa cosa per le tempistiche di lavoro).
Quello del PC è il periodo dove si compete. Può essere rappresentato da un singolo match o da più incontri spalmati in una stessa giornata o in più giorni.
Infine, abbiamo il periodo transitorio che è generalmente rappresentato da un paio di microcicli rigenerativi molto aspecifici, con una frequenza di allenamento più bassa e con poco volume e intensità.
Per essere più chiari…
Molto indicativamente, una “tabella di marcia” potrebbe essere quella mostrata sopra, con un periodo di preparazione generale (settimana 1-10), una fase di preparazione specifica (sett. 11-15) ed il periodo competitivo (ultima settimana).
Dopo un paio di settimane di adattamento anatomico con un volume di allenamento medio ed un’intensità medio-bassa (carichi non superiori al 50-60% 1RM), si inizia ad aumentare il lavoro di resistance training, sia per l’incremento della forza massimale che resistente. In questo periodo si può anche andare ad utilizzare con esercizi mono-articolari per sviluppare i muscoli più carenti (nel caso questi siano particolarmente deboli rispetto agli altri). Per i lavori di forza resistente (continui o a circuito) si possono utilizzare esercizi coi sovraccarichi, a corpo libero e con compagno.
Al fine di costruire una solida base aerobica si ricorre alla corsa o alla bicicletta, non superando il 70-75% della frequenza cardiaca su lavori continui della durata di 30-60 minuti (capacità aerobica). Invece, riguardo alla potenza aerobica, si fanno corse alla soglia del VO2max per 3-4′ o interval training particolarmente intensi (HIIT). Nel grafico riportato sotto, è osservabile il miglioramento del massimo consumo di ossigeno e della gittata sistolica, entrambi ottenuti tramite un allenamento ad intervalli (15/15) ed uno di corsa prolungata per tempi modesti (4×4 min).
Aerobic high-intensity intervals improve VO2max more than moderate training (Helgerud J. et al., 2007); grafico a cura del Dott. Paolo Evangelista.
Fra la fine della GPP e l’inizio della fase più specifica possiamo sbizzarrirci (per modo di dire) con lavori esplosivi con kettlebell, metodo a contrasto, palle mediche (anche simulando i gesti di gara), balzi, eccetera. E sulla velocità è bene usare degli sprint su brevi distante (10-50 metri) e lavorare sulla capacità di reazione.
Per ultima, ma non meno importante, la resistenza anaerobica. Si cerca di rendere l’organismo più tollerante all’accumulo di acido lattico, in modo da migliorare la tenuta atletica generale, ricorrendo a circuiti che possono mischiare esercizi a corpo libero o gesti da gara. I tempi di lavoro sono riportati poco più sotto.
A grandi linee, quelli che seguono sono i metodi di lavoro.
Forza massimale: 3-6 sets x 3-7 ripetizioni (75-90% 1RM)
Forza resistente aerobica (capacità): 10-15′ di lavoro (rec. incompleto, 2-4′)
Forza resistente aerobica (potenza): 3-5′ di lavoro (rec. completo)
Forza resistente anaerobica (capacitàlattacida): 90-120″ di lavoro (rec. incompleto, circa 1′)
Forza resistente an. (potenza lattacida): 40-90″ di lavoro (recupero completo)
Forza resistente an. (capacità alattacida): 12-20″ di lavoro (rec. incompleto, circa 1′)
Forza resistente an. (potenza alattacida): 5-10″ di lavoro (rec. completo, 2-3′)
Forza esplosiva/power: 3-6 sets x 1-5 ripetizioni
Resistenza aerobica (capacità): 30-60′ di lavoro (65-75% FCmax)
Resistenza aerobica (potenza): 3-4′ di lavoro (85% Fcmax) ripetuti 3-4 volte (rec. 2-4′)
Velocità/rapidità: sprint di vario genere su brevi distanze (10-50 m) con rec. completo
Potenza resistente (capacità lattacida): 60-120″ di lavoro (rec. 60-90″)
Potenza resistente (potenza lattacida): 40-90″ di lavoro (rec. 3-5′)
Potenza resistente (capacità alattacida): 12-20″ di lavoro (rec. 10-45″)
Potenza resistente (potenza alattacida): 5-12″ di lavoro (rec. 1-3′).
Intensità: percentuale del carico sollevato rispetto al proprio massimale (% 1RM), percentuale della frequenza cardiaca massima (% FCmax).
Volume: serie x volume x kg sollevati (tonnellaggio), serie di corsa x metri corsi (chilometraggio totale).
Densità: rapporto fra lavoro e recupero (work on/off).
Per monitorare la frequenza cardiaca è vivamente consigliato l’utilizzo di un cardiofrequenzimetro.
Gli esercizi da utilizzare, alcuni li abbiamo già accennati, bene o male sono quelli che tutti gli addetti ai lavori già conoscono: sollevamenti con bilanciere, trap bar e manubri, kettlebell, palle mediche, corsa, bici e/o cyclette, vogatore, balzi di vario genere, slitta, sprint su brevi distanze (anche con cambi di direzione), battle rope, esercizi a corpo libero e con partner, elastici, macchine isotoniche, gesti tecnici tipici dello sport praticato e così via.
Sopra, una camminata prolungata volta all’incremento della forza resistente di tipo aerobico (aerobic strength endurance).
Con 2-3 sedute di allenamento (preparazione atletica) a settimana si possono ottenere dei bei risultati.
Cosa manca? Di altro ovviamente c’è da allenare la coordinazione, equilibrio e propriocezione e fare il giusto stretching più eventuali sedute dedicate alle tecniche di recupero (massaggi, bagni freddi). La flessibilità (stretching) va allenata durante tutto il macrociclo; coordinazione, equilibrio e propriocezione trovano il loro collocamento principalmente durante la fase di preparazione fisica generale (GPP).
Sia nella GPP che SSP è inoltre consigliabile allenare con moderazione il collo.
Ovviamente durante l’intera preparazione ci saranno moltissimi allenamenti “tradizionali” con il maestro ed i compagni, dove si andrà a lavorare sulla tecnica, lo sparring e su eventuali scelte tattiche e strategiche. Di ciò però non parliamo dato che non è compito del preparatore atletico occuparsi di queste cose. Va comunque specificato, perdonate la banalità, che è inutile massacrarsi di preparazione atletica se non si è sufficientemente bravi nel proprio sport. Sul tatami di gara non si va a squattare, saltare o ad eseguire circuiti, ma a combattere con un avversario. È follia pensare a una cintura blu di bjj che passa più tempo a sollevare pesi che a rollare con i compagni di allenamento!
Conclusioni
Gli sport da combattimento sono sport estremamente complessi, anche sotto al profilo dello strength and conditioning. Allenarsi tanto ma soprattutto bene, alternando gli stimoli allenanti, individualizzando il lavoro e periodizzando il tutto si può fare molto, elevando le performance sportive di chiunque. Dall’atleta più portato a quello più scarso.
In futuro torneremo a parlare di questi argomenti, approfondendo alcuni concetti, anche in base all’apprezzamento che lettori, atleti e coach avranno nei riguardi di questo articolo.
Landow L. – Ultimate Conditioning for Martial Arts (2016) Bompa T. e Buzzichelli C. –Periodizzazione dell’allenamento sportivo (2017) Joel Jamieson – Ultimate MMA Conditioning (2009) Jan Helgerud, Kjetill Høydal, Eivind Wang, Trine Karlsen, Pålr Berg, Marius Bjerkaas, Thomas Simonsen, Cecilies Helgesen, Ninal Hjorth, Ragnhild Bach, Jan Hoff – Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007 Apr;39(4):665-71.
Salve ragazzi! Questo articolo è stato scritto allo scopo di dare un aiuto a tutti quei fighter che spesso si sono infortunati al ginocchio.
Cenni teorici
Questo accade perché, come ben sappiamo, i lottatori o comunque i combattenti in genere ricevono innumerevoli sollecitazioni non molto salutari a livello delle articolazioni, sia in combattimento che in allenamento.
Tutto ciò viene poi accompagnato da un riscaldamento che dimentica spesso il lavoro di mobilità articolare specifica per la lubrificazione e la protezione delle articolazioni, dalla mancanza di protocolli di lavoro specifici per il miglioramento della stabilizzazione delle stesse e soprattutto dalla mancanza di dialogo con esperti del settore nel caso di infortunio.
Come fare allora a non farsi male, o quantomeno a diminuire il rischio di infortunarsi?
La risposta che balza subito alla mente è:
“RIPOSATI, METTI UN PO’ DI GHIACCIO, PER QUALCHE GIORNO PRENDI DEGLI ANTI-INFIAMMATORI E POTREMO RIPRENDERE AD ALLENARCI”
E’ la risposta esatta? Assolutamente no!
Per il semplice fatto che in questo modo si va ad agire solo sull’effetto dell’infortunio e non direttamente sulla causa, cioè la presenza di deficit a livello di stabilizzazione del ginocchio, ovvero dei muscoli che vi si inseriscono come il tensore della fascia lata, gruppo degli adduttori e degli abduttori.
Applicazioni pratiche
Per andare quindi ad agire direttamente sulla causa ho voluto scrivere un semplice quanto veloce protocollo allenante allo scopo di migliorare la stabilizzazione del ginocchio e renderlo meno vulnerabile alle sollecitazioni con cui ci confrontiamo giornalmente negli sport da combattimento.
Si tratta di un semplice circuito della durata di circa 5-10 minuti composto da tre esercizi che mi sono stati insegnati ad un corso della Functional Training School e, come per ogni mio articolo, troverete naturalmente anche il motivo di ogni singolo esercizio inserito.
MINI BAND SIDE WALK 5 passi dx + 5 passi sx
MINI BAND SQUAT 10 rep
RUBBERBAND LUNGE 5 + 5 rep
Ripetere il mini circuito per 3 volte no stop.
Andiamo per ordine:
MINI BAND SIDE WALK: in stazione eretta, posizionare la MINI BAND ad altezza caviglie. Da questa posizione effettuare dei piccoli passi laterali mantenendo le gambe totalmente distese. Durante l’esecuzione dell’esercizio sentirete il lavoro su tensore della fascia lata in primis e su adduttori e abduttori della gamba.
MINI BAND SIDE WALK
Perché questo esercizio? Fermiamoci un attimo a riflettere. Dove si inseriscono questi muscoli? Esatto! Si inseriscono proprio sulle zone laterale e mediale del ginocchio svolgendo una funzione stabilizzatrice.
MINI BAND SQUAT: in stazione eretta posizionare la mini band immediatamente sopra il ginocchio e posizionare i piedi nella larghezza adatta ad effettuare uno squat.
MINI BAND SQUAT
Da questa posizione effettuate un squat enfatizzando il lavoro di bacino per allungare il gluteo (avete presente quando andate al bagno e vi state sedendo? Bene dovete fare la stessa cosa, ovvero dovete andare alla ricerca del cesso con le chiappe), contemporaneamente portate le ginocchia verso l’esterno mentre la mini band opporrà resistenza a questo movimento.
Con questo secondo esercizio si lavora sempre sugli stabilizzatori, enfatizzando il tutto con il lavoro di squat.
RUBBERBAND LUNGE: fissare la prima estremità della rubberband e far passare la seconda attorno ad un ginocchio, posizionarsi in modo tale da creare una leggera tensione con la BAND. Effettuare un passo indietro con la gamba libera, stabilizzarsi ed effettuare un affondo funzionale, spingere in avanti ed effettuare il secondo affondo, ritornando infine in posizione di partenza.
RUBBERBAND LUNGE
Effettuare lo stesso lavoro con l’altra gamba. Avendo lavorato a piedi pari nei due esercizi precedenti, con il terzo esercizio lavoreremo sulle stesse componenti ma lavorando prima su un solo ginocchio, poi sull’altro.
Consigli sul materiale
Se non possiedi delle mini-band come quella rossa mostrata nella foto, puoi benissimo lavorare comunque con la rubberdand piegata in due (quella della seconda foto).
MINIBAND
RUBBERBAND PIEGATA IN DUE
Esempio su cliente
Lui è Josef Giuseppe, atleta thai boxer con cui ho il piacere di allenarmi sotto la guida del maestro Alfonso Cristina presso la palestra Fight 360 Team Catania – GYM del mitico Placido Maugeri.
Da qualche tempo avvertiva dolori al ginocchio, senza sapere quale fosse la causa di ciò.
Da vari esami fatti non si riscontrava nulla di anomalo, pertanto per continuare ad allenarsi applicava ciò che fanno tutti:
– riposo
– antinfiammatori
– ghiaccio
Ottenendo così solo una riduzione temporanea del dolore perché agiva solo sull’effetto e non direttamente sulla causa.
Ma qual è la causa? E’ bastato fargli eseguire qualche ripetizione di squat per capirlo.
Nella prima parte del video che vi mostro infatti si può notare che, sia in fase di discesa che di salita, il ginocchio dx (quello dolorante) “balla” letteralmente a destra e sinistra per mancanza di stabilità.. in più attua tutta una serie di compensi che di norma non dovrebbero esserci.
Siamo andati semplicemente a lavorare quindi sulla stabilizzazione del ginocchio col mini circuito di cui abbiamo parlato prima.
Nella seconda parte del video potete notare i miglioramenti che si sono ottenuti in sole 2 settimane di lavoro nonostante il fatto che non lo abbia seguito personalmente in ogni seduta e che quindi abbia continuato a lavorare in totale autonomia.
Cosa sarebbe successo se oltre a ciò fosse stato seguito su ogni singolo movimento al fine migliorarlo sempre più?
Cosa succederebbe se un semplice circuito del genere venisse inserito nel riscaldamento generale di un praticante di SdC? A voi la risposta.
Conclusioni
Questo è solo un esempio di circuito, di varianti se ne possono creare a bizzeffe, modificando opportunamente in base alla problematica. Tengo a precisare comunque che tale circuito o suoi simili non possono sostituire il parere e/o il trattamento di un medico, di un fisioterapista o di qualsiasi altro professionista, ma ha il solo scopo di aiutare atleti privi di lesioni al ginocchio di migliorare la stabilizzazione del ginocchio e quindi diminuire il rischio di infortuni.
Fammi sapere se ti è piaciuto l’articolo, condividilo e commenta pure se hai qualche dubbio o perplessità. Grazie per l’attenzione.
La prima parte la potete trovare a questo link. Buona lettura!
Ipofisi
L’ipofisi è una piccolissima ghiandola endocrina di forma ovale (pesa all’incirca mezzo grammo), situata poco sotto l’ipotalamo. Nonostante le ridotte dimensioni ha un ruolo importante perché esercita una funzione di controllo su (altro…)
Che cos’è l’intelligenza? E quella di tipo motorio? Cosa c’entra la psicologia?
Nel seguente articolo cercheremo di fornire delle risposte a queste domande.
Intelligenza e predizione
Sin dall’alba dei tempi filosofi, psicologi, sociologi, medici e altri studiosi di vario tipo si sono arrovellati il cervello nel tentativo di comprendere al meglio e definire l’intelligenza umana. Il giornalista scientifico Marco Magrini, nel bellissimo testo Cervello. Manuale dell’utente, parla dell’intelligenza nel seguente modo:
«Nel suo libro On intelligence, Hawkins definisce l’intelligenza come «la capacità del cervello di predire il futuro attraverso analogie con il passato». Il che potrebbe essere addirittura un po’ riduttivo. “Nuovi studi scientifici – scrive Lisa Feldman Barrett, una psicologa della Northeastern University – suggeriscono che pensieri, emozioni, percezioni, ricordi, decisioni, categorizzazioni, immaginazioni, e molti altri fenomeni mentali storicamente considerati come processi cerebrali distinti, possono essere riuniti sotto un singolo meccanismo: la predizione”».
[…]
«In poche parole, il cervello predice costantemente le proprie percezioni. È un po’ come se guardasse sempre nel futuro, più o meno prossimo».
[…]
«Si potrebbe dire che il cervello ha questa ossessione per il futuro perché è l’unico modo che ha per gestire gli imprevisti e le incertezze della vita, e che quindi è evolutivamente motivata. La mostruosa mole di informazioni, interne ed esterne, che il suo encefalo calcola ogni secondo è spesso poco chiara ed ambigua, così lui ripara cercando immaginare cosa accadrà. Per l’esattezza, deve fare un’enorme sequenza di inferenze (dal latino inferre, “portare dentro”), al fine di predire l’immediato futuro».
Restando in tema, quando noi camminiamo il cervello predice a ogni passo quando il piede raggiungerà il suolo. Privati di questo meccanismo di predizione, probabilmente non saremmo neanche in grado di camminare per pochi metri senza cadere, in special modo se la superficie a cui il nostro piede va in contro è irregolare.
Tipi di intelligenza per la psicologia
Come molti sapranno, negli anni numerosi psicologi hanno tratto il tema dell’intelligenza, provando a definirla e classificarla in varie tipologie. Una delle classificazioni più note è indubbiamente quella fatta dallo psicologo statunitense Howard Gardner, il quale distingue ben 9 tipi di intelligenza*: intelligenza linguistica, logico-matematica, spaziale, corporeo-cinestetica, musicale, interpersonale, intrapersonale, naturalistica ed esistenziale.
*inizialmente sette, altri due vennero aggiunti negli anni novanta.
Per questo motivo è troppo semplicistico, nonché arrogante, giudicare le persone dividendole in due macrocategorie, intelligenti o stupide. L’essere umano è qualcosa di assai più complesso e sfumato. Al riguardo Einstein diceva: «Ognuno è un genio. Ma se si giudica un pesce dalla sua abilità di arrampicarsi sugli alberi lui passerà tutta la sua vita a credersi stupido».
Tonando a noi, l’intelligenza che ci interessa di più trattare in questo articolo, come da titolo, è ovviamente quella corporeo-cinestetica, talvolta volgarmente definita “motoria”. Coinvolge alcune aree del cervello ben specifiche (cervelletto, talamo e gangli fondamentali). I soggetti in cui questa intelligenza è più sviluppata, presentano un’efficienza motoria ed una padronanza dei movimenti corporei molto superiore alla media. Essa riguarda non solo gli sportivi ma anche chi si occupa di lavori manuali che richiedono una certa precisione (abilità fino motorie). La sua valenza è inoltre allargata agli usi espressivi del corpo, come quelli adottati dagli attori.
Tanto per fare un esempio più pratico, gli atleti con skills motorie di un certo livello apprendono movimenti e gesti tecnici a loro nuovi quasi sempre con un’elevata rapidità. Ne parlava bene un paio d’anni fa Donato Formicola, docente universitario, ricercatore e coach di weightlifting per la Federazione Italiana Pesistica (FIPE). Egli aveva raccontato di come fosse stato semplice insegnare due alzate olimpiche complesse come lo stappo (snatch) e lo slancio (clean and jerk) a degli sciatori agonisti che prima di allora non avevano visto quelle alzate con bilanciere.
Del resto, anche durante la quotidiana pratica sportiva, a tutti può capitare di osservare alcuni principianti apprende nuovi gesti tecnici con un’incredibile agevolezza ed altri ancora, imparare i medesimi in più tempo, palesando una maggior difficoltà.
Inoltre, per concludere, come peraltro è ben noto in letteratura scientifica, lo sviluppo dell’intelligenza è fortemente condizionato, oltre che dall’ambiente in cui cresciamo (che in qualche modo ci plasma), anche da fattori genetici [1,2]. I quali determinano perfino la struttura cerebrale [3].
Ulteriori approfondimenti li potete trovare nelle referenze al fondo dell’articolo.