Dopo l’apprezzatissimo articolo sul taglio del peso, torniamo a parlarne riassumendo quanto detto dal biologo nutrizionista e lottatore Roberto Scrigna all’interno di una puntata dell’Invictus Podcast (potete recuperarla a questo link).
Buona lettura!
Introduzione
Il taglio del peso, argomento che non passa mai di moda, consiste in quell’insieme di pratiche volte a perdere peso generalmente in poco tempo, per poi riguadagnarlo nel giro di poche ore. Il taglio del peso – in inglese weight-cutting – oltre a questioni di natura etica (barare?!), fa molto discutere a causa di danni alla salute che può provocare in acuto1 ed ipoteticamente anche in cronico.
Punti chiave #1 – Classificare gli sport dove si taglia il peso
Dobbiamo analizzare uno sport che richiede un weight-cutting basandoci su due aspetti: le tempistiche del taglio (quanto passa fra la pesatura ufficiale e la competizione) e gli sforzi energetici richiesti dallo sport in questione (aerobici o anaerobici). È importante capire se il calo del peso deve passare o meno per una restrizione glucidica (meno carboidrati) e se questa è lieve oppure netta. L’obiettivo, com’è logico che sia, è quello di far rientrare l’atleta nella categoria di peso desiderata senza compromettere la bontà della sua condizione atletica. Ci sono sport dove ci si pesa a ridosso della gara (1-2 ore prima), altri intermedi dove il lasso di tempo fra weigh-in e competizione è di circa 6 ore (powerlifting) ed altri ancora dove il tempo inizia ad essere considerevole (24-36 ore come nelle MMA, nella lotta di alto livello o nel judo olimpico).
#2 – Parametri su cui poter agire in acuto
I parametri che possono influenzare il successo oppure no di un taglio del peso sono fondamentalmente di quattro: la quantità di glicogeno stoccata nel fegato, lo stato di idratazione dell’individuo, l’equilibrio idro-elettrolitico (i livelli di sodio e di potassio) e l’assunzione di fibre. È sconsigliato disidratarsi nelle discipline che prevedono un weigh-in molto vicino alla gara (entro le due ore). In sport dove gli sforzi sono perlopiù anaerobici alattacidi (pesistica olimpica, powerlifting) si possono manipolare i carboidrati in acuto, facendo perdere all’atleta il 2-3% del proprio peso corporeo (impegni fisici particolarmente brevi non fanno consumare all’organismo quantità eccessive di glicogeno muscolare). Oppure, ancora meglio, nel contesto appena citato si potrebbe lavorare sull’ingestione di fibre e sulla regolazione del sodio nei giorni antecedenti la pesatura. Per tagliare peso senza disidratarsi ci sono tre vie:
Il passaggio da una dieta ad alto contenuto di fibre ad una a povera di quest’ultime;
Il passaggio da una dieta ricca di alimenti idratati ad una più secca (per esempio dal riso alle più leggere gallette di riso);
Il passaggio da una dieta ricca di sodio ad un povera di sodio (con eventuale water loading*).
*Il water loading consiste nel bere parecchia acqua per alcuni giorni (solitamente 3 o 4) e berne poi molta meno per un breve periodo (24 ore o poco più). Si può citare un importante studio2 di Reid Reale e colleghi, dove un gruppo di 11 atleti era riuscito a modificare sensibilmente la propria massa corporea per un breve periodo. Come? Bevendo molta acqua per tre giorni di fila (100 ml/kg, quindi circa 7 litri al dì per un uomo di 70 kg) e riducendola drasticamente nel il quarto giorno (15 ml/kg), per poi eseguire successivamente un programma di reidratazione della durata di due giorni. Lo studio aveva avuto successo poiché non vi erano state reazioni avverse e le prestazioni non erano state intaccate dalla disidratazione.
Sopra, un breve estratto di un’intervista dove Marvin Vettori (atleta UFC) parla del proprio weight-cut per rientrare nella categoria dei pesi medi – 185 libbre, circa 84 kg – e qui sotto alcuni chiarimenti del suo nutrizionista.
L’intervista completa a Marvin Vettori è disponibile qui.
Alcuni nutrizionisti sostengono anche la necessità di giocare con l’assunzione di magnesio e potassio nella dieta degli atleti per modificarne in acuto il peso, ma queste cose non sono ancora state ben studiate dalla comunità scientifica, pertanto si tratta di un modus operandi non basato su solide evidenze mediche.
#3 – Un po’ di numeri
Se fra il peso e la gare passa poco tempo (entro le due ore) è consigliabile non manipolare più del 2% del bodyweight (peso corporeo, bw), per un lasso di tempo di circa sei ore il 6% e per uno spazio di 24-36 ore anche l’8-10%. Può capitare di vedere atleti famosi tagliare magari anche molto di più del 10%, ma in questi casi gli effetti collaterali sono sempre dietro l’angolo (basti pensare al rischio di danni renali in acuto3).
#4 – Ricarica post-weigh in
La prima cosa su cui concentrarsi è il ripristino dello stato di idratazione dell’atleta, magari con una soluzione elettrolitica contenente anche i carboidrati (zuccheri semplici, crema di riso). Gli sport di endurance ci insegnano che è possibile far assorbire a un atleta circa 90 grammi di carboidrati all’ora (9 g/h) sfruttando fonti multiple, usando sia fruttosio che glucosio. Abbinando ad esempio lo zucchero da cucina a delle maltodestrine in una soluzione liquida, oppure una crema di riso ed una bevanda contenente del fruttosio in polvere. Insomma, passo 1 idratazione (soluzione reidratante), passo 2 carboidrati e passo 3 proteine (se il tempo lo consente, altrimenti quest’ultime possono essere evitate). Tutto dipende dal tempo. Nel range di 2ore le proteine posso essere messe da parte, in favore degli EAA (aminoacidi essenziali), nelle 6 ore si può optare per delle whey idrolizzate (20-40 g di proteine in polvere), mentre sulle 24-36 ore se ne possono assumere molte, facendo più pasti. Le 24-36 ore di ricarica devono essere iperglucidiche e l’atleta deve dare al nutrizionista frequenti feedback circa il proprio stato fisico ed il proprio appetito. Può inoltre tornare utile l’assunzione di uno stimolante come la caffeina.
#5 – Esempio di un lavoro sul lungo periodo
Ipotizziamo un atleta che attualmente pesa 87 kg, con 15 kg da perdere e 8 mesi di tempo totale a disposizione. Le prime 4-6 settimane possiamo permetterci di fargli perdere anche l’1-1,5% del bw (peso corporeo). Più c’è tempo e più si possono manipolare le calorie. Inizialmente il deficit calorico è solitamente più drastico, col passare delle settimane rallenta (modificando la dieta o gli allenamenti). Prendiamo il caso che l’atleta, magari un powerlifter, abbia una tabella di marcia pulita, senza intoppi. Egli riesce ad arrivare a 72 kg – quindi si sbarazza correttamente dei 15 kg in eccesso – quando mancano 4 settimane al peso (sono passati 7 mesi). Ora ha un bel fisico, abbastanza asciutto e tirato, però deve rientrare nei -70 kg quando metterà piede sulla tanto temuta bilancia prima della gara, ergo, mancano ancora un paio di chiletti. Che fare adesso? Il nostro beniamino deve seguire un periodo di mantenimento del peso per due settimane e mezzo (18 giorni), dedicandosi poi alla manipolazione di sale, fibre e carboidrati negli ultimi 10 giorni (come gli ha prescritto il suo nutrizionista). Molto banalmente, anche il solo passare da un dieta high-carb (alto contenuto di carboidrati) ad una più povera (low-carb) solitamente può far perdere una parte considerevole del restante peso di scarto agli atleti (nel caso di esempio circa 2 kg). Infatti, la riduzione di fibra negli ultimi giorni antecedenti il weigh-in permette di ridurre il peso di un atleta fino al 2%.
Mettendo ora da parte l’esempio appena riportato, va tenuto a mente che le persone fisicamente più massicce, a parità di percentuale di peso tagliato, tollerano meglio il weight-cut. Con ogni probabilità, Brock Lesnar può tagliare agevolmente il 10% del suo bodyweight, Demetrious Johnson no. Inoltre, le donne generalmente hanno più difficoltà a manipolare il proprio peso in acuto rispetto agli uomini (in più hanno anche il ciclo mestruale che per salute e performance può essere una mina vagante).
Conclusioni
Cosa portarsi a casa? Beh, innanzitutto occorre conoscere bene lo sport in questione, i regolamenti della Federazione od Organizzazione di riferimento e l’atleta. Sarebbe buona cosa modificare il peso riducendo al minimo la pratica della disidratazione, non a caso più ci si disidrata e più la ricarica/reidratazione può essere problematica. Facendo un riassunto dei range d’azione: per questioni di buon senso si consiglia di manipolare fino al 2% del peso di un individuo, in casi particolari ci si può spingere fino al 3%, questo ovviamente su una pesata a ridosso della competizione sportiva. Si sale al 4-6% per lassi di tempo maggiori (fino a 6 ore) ed all’8-10% per tempistiche tipiche del professionismo (le 24-36 ore della UFC). Altro consiglio della nonna, specialmente quando si parla di tagli importanti, fatevi seguire da del personale medico competente ed evitate di risparmiare facendo le cose a casaccio, è in gioco la vostra salute!
[1] Joseph John Matthews, Ceri Nicholas – Extreme Rapid Weight Loss and Rapid Weight Gain Observed in UK Mixed Martial Arts Athletes Preparing for Competition. Int J Sport Nutr Exerc Metab. 2017 Apr;27(2):122-129
[2] Reid Reale, Gary Slater, Gregory R Cox, Ian C Dunican, Louise M Burke – The Effect of Water Loading on Acute Weight Loss Following Fluid Restriction in Combat Sports Athletes. Int J Sport Nutr Exerc Metab. 2018 Nov 1;28(6):565-573
[3] Andreas M Kasper, Ben Crighton, Carl Langan-Evans, Philip Riley, Asheesh Sharma, Graeme L Close, James P Morton – Case Study: Extreme Weight Making Causes Relative Energy Deficiency, Dehydration, and Acute Kidney Injury in a Male Mixed Martial Arts Athlete. Int J Sport Nutr Exerc Metab. 2019 May 1;29(3):331-338
Chi dorme non piglia pesci, ma chi non dorme non fa canestro (?)
Una storia, tante storie
È il pomeriggio del 26 febbraio, si giocano tre partite in quattro notti e il centrale dei Miami Heat, Hassan Whiteside, è in gran forma. L’indomani la squadra di quest’ultimo affronterà i Golden State Warrior e il giorno dopo ancora – 28 febbraio – voleranno tutti insieme a Houston per affrontare i Rockets. Ora però egli sta pensando all’orario a cui finirà la partita con i Warrior (22:00), quando saliranno in aereo per un altro volo (23:30), quando atterreranno a Huston (02:00) e quando giungeranno finalmente nell’hotel. Arriveranno lì almeno le tre di notte. Almeno. In quella stessa giornata dovranno poi giocare contro i Rockets.
«Il sonno conta, – dice Whiteside – conta molto. Potrebbe essere la differenza fra una giocata di carriera ed una terribile». Ma è dentro questa bugia che sta l’enigma della “NBA life”. Il sonno è una cosa tanto importante quanto sfuggevole. Come dice Whiteside: «È così difficile ottenere il sonno di cui hai bisogno». Il giocatore dei Miami Heat spera di guadagnare qualche ora di sonno durante il viaggio in aereo per Huston, che il letto dell’albergo sia ok e che la frequente assunzione di melatonina lo aiuti a chiudere gli occhi. Ma anche con i giusti accorgimenti, nell’attuale calendario NBA è possibile ottenere un sonno duraturo e di qualità? «No», dice Whiteside. «È impossibile, è impossibile».
La stanchezza è stata a lungo una costante nella vita dei giocatori dell’NBA. Parliamo di un campionato con squadre che giocano 82 partite in meno di 6 mesi, volando fino a 80.000 chilometri a stagione, abbastanza per girare due volte il globo. Durante la stagione 2018/2019 le squadre dell’NBA si sono spostate in aereo con una media di oltre 400 km al giorno, per 25 settimane di fila. Molti addetti ai lavori – giocatori, allenatori, preparatori – hanno fatto notare come gli sforzi fisici tipici dello sport, le interruzioni circadiane, i continui spostamenti fra zone con fusi orari differenti – non si sposino bene in un’ottica di salvaguardia della salute dell’atleta. I dati finora raccolti evidenziano come la privazione del sonno sia un flagello per l’NBA, un vaiolo che colpisce i corpi e le menti dei cestisti, lasciando segni profondi. Ci sono manager che lavorano per l’NBA e che, oltre a sottolineare il «grosso problema», dicono: «Abbiamo una grande popolazione di vampiri, servono delle soluzioni».
La salute e il benessere dei giocatori continuano a essere un punto focale per l’NBA
(Ufficio stampa NBA)
Nonostante le promesse e gli sfori della lega, la privazione del sonno è ancora uno dei principali fattori legati allo stato di salute degli atleti.
Ora, spostiamoci di qualche centinaio di chilometri.
Dalla sua postazione nello spogliatoio dello Staples Center di Los Angeles, Tobias Harris si guarda intorno. Poco dopo, indicando i suoi compagni di squadra dice: «Chiedi a chiunque nella stanza, sto parlando del sonno. Penso che fra un paio d’anni si parlerà dei problemi legati al sonno come ora si parla delle commozioni cerebrali nell’NFL (football americano, ndr)».
Alcuni compagni ci scherzano su: «Oh, c’è un momento in cui devi andare a letto». Ma Harris sa bene che: «Devo essere in forma ai massimi livelli per affrontare al meglio l’indomani».
Dati
Quanto riportato sopra è parte di un articolo di ESPN (tradotto, adattato e riassunto per l’occasione). Cogliendo la palla al balzo, in letteratura scientifica è stato appurato come un sonno lungo e regolare possa portare benefici alle prestazioni dei giocatori di basket (maggior precisione sui tiri a canestro, velocità, vigore e minor affaticamento) [1]. Un sonno incostante e breve (perennemente inferiore alle 8 ore) sul lungo periodo pare aumenti sensibilmente il rischio di infortunarsi [2]. Tra l’altro, anche le neuroscienze hanno fatto notare come la privazione di sonno porti le persone a desiderare più facilmente il junk food (cibo spazzatura) [3].
Amigdala e ipotalamo, fra le altre cose, si occupano del famigerato “sistema della ricompensa“. Basta dormire poco anche solamente una o due volte per far cadere il cervello in questo tranello della ricompensa. Insomma, una carenza di sonno porta queste due componenti ad essere stimolate ben più del normale qualora i nostri occhi si posino sui cibi che, in un’ottica edonistica, più ci soddisfano.
L’amigdala in particolare, se sovrastimolata, porta a far prediligere alle persone cibi notoriamente molto calorici (ricchi di zuccheri e grassi).
Conclusioni
Le conclusioni, per una volta, è il caso di lasciarle fare a qualcun altro.
Baxter Holmes – NBA exec: ‘It’s the dirty little secret that everybody knows about’ (2019) Migliaccio et al. – Finali notturne alle Olimpiadi: possibili influenze dei ritmi circadiani sulla perfomance? Studio pilota per Rio 2016. Da Strength & Conditioning Anno V, n.16 aprile-giugno (2016) Le Scienze – La carenza di sonno aumenta la voglia di Junk Food (2018) 1 Cheri et al. – The Effects of Sleep Extension on the Athletic Performance of Collegiate Basketball Players (2011) 2 Milewski M. D. et al. – Chronic lack of sleep is associated with increased sports injuries in adolescent athletes (2014) 3 Rihm J. S. et al. – Sleep deprivation selectively up-regulates an amygdala-hypothalamic circuit involved in food reward (2018)
Come già accennato in passato (qui), la caffeina per tutta una serie di motivi risulta essere utile agli sportivi, compresi i praticanti di sport da combattimento e arti marziali. Ora, cercheremo di soffermarci sui suoi benefici per i fighters.
Buona lettura!
Cos’è la caffeina?
La caffeina è una trimeltixantina, alcaloide naturale presente in alcune piante (caffè, cacao, matè, ecc.). Questa sostanza è una stimolante del sistema nervoso centrale (SNC) ed è (altro…)
Glucosamina, un integratore consigliato da molti “addetti ai lavori”, compreso il mio ortopedico, per ridurre i dolori articolari ed accelerare la ricrescita delle cartilagini. Ma è un composto veramente così utile? Scopriamolo insieme!
Cenni di fisiologia e letteratura scientifica
La glucosamina (C6H13NO5) è un amminosaccaride, nonché uno dei principali precursori della sintesi delle proteine glicosilate e dei lipidi. Viene sintetizzata dal nostro corpo (precursore dei glicosaminoglicani) ed è utilizzata principalmente per salvaguardare, o ripristinare, l’integrità articolare.
I glicosaminoglicani sono uno dei componenti principali del tessuto cartilagineo, per questo si ritiene che la glucosamina
Caffeina, può esserci nulla di più (ab)usato? In questo articolo andremo a vedere i pro, i contro e le linee guida di utilizzo. Buona lettura!
Cenni di chimica e fisiologia sportiva
La caffeina è una trimeltixantina, alcaloide naturale presente in alcune piante (caffè, cacao, matè, ecc.). Questa sostanza è una stimolante del sistema nervoso centrale (SNC) ed è largamente usata per contrastare stanchezza e sonnolenza. Essa agisce aumentando i livelli di adrenalina, noradrenalina e la frequenza cardiaca (fc). Le sue interazioni col SNC derivano dalla facilità con cui la caffeina, una volta assunta, attraversa la barriera emato-encefalica (BEE). Sui tessuti dell’organismo funziona da vasodilatatrice, eccetto su quello nervoso, dove risulta avere un effetto vasocostrittore.
Formula chimica
La sua digestione dentro al tratto gastrointestinale dura circa 45 minuti e, in condizioni normali, i suoi effetti possono rimanere stabile per 1 ora, per poi gradualmente scemare nell’arco di 3-4 ore. Questo però dipende molto da persona a persona (abitudini alimentari, assuefazione, ecc.). Ma riguardo all’assuefazione ne parleremo meglio più avanti.
Nell’uso quotidiano, la caffeina stimola la concentrazione e l’attenzione delle persone, anche sedentarie, migliorando le funzioni cognitive [1]. Questo può essere molto utile anche negli sport di situazione (tattica) e non solo, se pensiamo all’incremento della capacità di reazione data sempre da questo stimolante [2].
La sua assunzione, in acuto, aumenta i livelli di catecolamine plasmatiche: adrenalina e noradrenalina, le quali agiscono sul sistema di trasmissione adrenergico [20,21].
La caffeina promuove il rilascio degli acidi grassi liberi nel sangue, i quali possono essere usati come combustibile, risparmiando in una certa misura il glicogeno muscolare.
Oltre a quanto già detto, questo composto è utile per le attività di endurance (inibisce parzialmente il senso della fatica) [3,4,5,6] e, stimolando la lipolisi, favorisce il dimagrimento (riduce anche l’appetito). Per di più, attenua il dolore muscolare ad insorgenza ritardata (DOMS) [6].
Dolore muscolare post allenamento ridotto dalla caffeina [6]
La caffeina influenza anche l’EPOC (consumo di ossigeno post allenamento). Infatti si è visto che un dosaggio cronico di 6 mg di caffeina per kg di peso corporeo (circa 420 mg per un uomo di 70 kg), assunto prima dell’allenamento con i pesi, aumenta i livelli di EPOC e la spesa energetica del 15% [7].
Variazione del consumo di ossigeno (VO2) durante (destra) e post allenamento (sinistra) [7]
Riguardo invece alla forza massimale e alla potenza, i dati sono contrastanti [8,9,10,11]. Volendo provare a dare un giudizio, generale sulla questione, possiamo affermare che, qualora vi siano dei benefici, questi non sono particolarmente rilevanti.
Tuttavia, quelli elencati fino ad ora non sono che una piccola parte dei processi messi in atto da questo stimolante (figura sotto).
Gli innumerevoli effetti della caffeina secondo Sökmen B. e colleghi [12]
Per evitare l’assuefazione cronica, bisogna ricorrere a dei periodi di stop (wash out). Un rapporto di assunzione-scarico molto utilizzato, espresso in settimane, è di 3:1 o 4:1, con il periodo di massima ricezione (teorica) alla sostanza che si trova in corrispondenza della/e gara/e. Teniamo presente che sui “principianti” la caffeina inizia a manifestare i suoi effetti dopo circa 30 minuti, è importante ciclizzarla perché altrimenti, oltre a perdere di efficacia, verrebbero ritardate le sue tempistiche di azione.
La caffeina viene normalmente espulsa tramite l’urina. Tra l’altro, essa possiede una funzione diuretica [13].
Antagonismo con la creatina
Più di 20 anni fa, un celebre studio di Vandenberghe e colleghi [14] notò, quasi per caso, un certo antagonismo fra la caffeina e la creatina. Lo studio tuttavia presentava grossi limiti (breve durata, un solo test per misurare la variazione di performance, un periodo di scarico troppo breve, un campione poco ampio, dosi di caffeina forse eccessive). Negli anni a seguire, sono state pubblicate una miriade di ricerche scientifiche che hanno smentito questo antagonismo [15,16,17,18,19]. Il fatto che molte di esse abbiano usato protocolli di assunzione-scarico differenti dallo studio di Vandenberghe citato ad inizio paragrafo, non esclude del tutto che fare un carico di creatina a pochi giorni da una competizione (20-25 grammi/dì per 4-5 giorni di fila), possa annullare gli effetti positivi della caffeina, o viceversa. Questo però solamente in acuto.
Molte aziende producono e vendono integratori che contengono entrambe queste sostanze
Doping?
No, potete stare tranquille. Anche se assunta in capsule la caffeina, secondo il COI (Comitato Olimpico Internazionale) e la WADA (World Anti-Doping Agency), non è considerata una sostanza dopante. Lo era fino al 2007, poi le normative sono cambiate. Ne avevamo parlato qui un po’ di mesi fa.
Dosaggio ed assunzione
Prima di passare alle capsule di caffeina (generalmente da 200 mg), è consigliabile abituare piano piano il nostro corpo all’assunzione di questa sostanza in dosi minori (basta una tazzina di caffè), in modo da evitare possibili effetti collaterali (70-120mg di caffeina per ogni tazzina di caffè). É consigliato non superare i 350-400mg al giorno di caffeina, anche se le persone completamente assuefatte possono reggere dosaggi superiori.
Un piano di assunzione per “principianti” potrebbe essere il seguente:
Week 1: un paio di caffè al giorno
Week 2: una compressa da 200 mg pre-workout e 1-2 caffè nei giorni off
Week 3: una compressa da 200 mg pre-workout e 1-2 caffè nei giorni off
Week 4: una compressa da 200 mg pre-workout e 1-2 caffè nei giorni off
Week 5: wash out (scarico completo)
Effetti collaterali
Le controindicazioni principali sono: nervosismo, febbre, diuresi, tachicardia e ipotensione. Comunque nulla di preoccupante, se si segue l’opportuna posologia e se non si hanno problemi cardiaci o renali.
In ogni caso, è consigliabile consultare il proprio medico curante.
Conclusioni
La caffeina è una delle sostanze più studiate di sempre e anche delle più efficaci, non è un caso che in passato fosse considerata doping. Per un ampio numero di sportivi, questo composto è utile. Può servire ai culturisti, pur non essendo indispensabile, o essere molto importante per i maratoneti. Tutto dipende ovviamente dal contesto.
Grazie per l’attenzione e buon allenamento!
L’autore non risponde degli eventuali danni derivati dalle informazioni ivi contenute
Cravanzola E. – Sostanze eccitanti per il dimagrimento e la performance sportiva (2017)
Temple J. L. et al. – The Safety of Ingested Caffeine: A Comprehensive Review (2017)
Muñoz M. – Efecto de la cafeína sobre las agujetas (2013)
[1] Wyatt J. K. et al. – Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness (2004)
[2] Santos et al. – Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo (2014)
[3] Bell G. D. et al. – Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers (2002)
[4] Doherty M. – Caffeine lowers perceptual response and increases power output during high-intensity cycling (2004)
[5] Graham T. E. et al. – Performance and metabolic responses to a high caffeine dose during prolonged exercise (1991)
[6] Hurley C. F. et al. – The effect of caffeine ingestion on delayed onset muscle soreness (2013)
[7] Astorino A. T. et al. – Effect of acute caffeine ingestion on EPOC after intense resistance training (2011)
[8] Bond V. et al. – Caffeine ingestion and isokinetic strength (1986)
[9] Williams J. et al. – Caffeine, Maximal Power Output, and Fatigue (1988)
[10] Astorino A. T. et al – Effects of caffeine ingestion on one repetition maximum muscular strength (2008)
[11] Wiles J. et al. – The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial (2006)
[12] Sökmen B. et al – Caffeine use in sports: considerations for the athlete (2008)
[13] Robertson M. D. et al. – Effects of Caffeine on Plasma Renin Activity, Catecholamines and Blood Pressure (1978)
[14] Vandenberghe K. et al. – Caffeine counteracts the ergogenic action of muscle creatine loading (1996)
[15] Doherty M. et al. – Caffeine is ergogenic after supplementation of oral creatine monohydrate (2002)
[16] Spradley B. D. et al. – Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance (2012)
[17] Lee C. L. et al. – Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance (2011)
[18] Vanakoski J. et al. – Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations (1998)
[19] Fukuda D. H. – The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans (2010)
[20] Anderson D. E. et al. – Effects of caffeine on the metabolic and catecholamine responses to exercise in 5 and 28 degrees C (1994)
[21] Norager C. G. et al. – Metabolic effects of caffeine ingestion and physical work in 75-year old citizens. A randomized, double-blind, placebo-controlled, cross-over study (2006)
La creatina è indubbiamente uno degli integratori più diffusi ed utilizzati nell’ambiente della palestra. In questo articolo, dal titolo sicuramente provocativo, cercheremo di parlare di tutto ciò che riguarda questo composto (fisiologia, materiale scientifico, rapporto con altri integratori, dosaggio, eccetera). Buona lettura!
Cenni di chimica e fisiologia
La creatinaè un composto ergogenico che nel nostro corpo si trova per un 40% in forma libera, per un 50% in forma fosforilata e per il restante 10% è contenuta nel fegato, ove è sintetizzata da due aminoacidi ed un coenzima, reni e cervello. Il nostro organismo ne produce circa 1 grammo al giorno. La creatina viene utilizzata principalmente per la sintesi dell’ATP (adenosintrifosfato) del sistema anaerobico alattacido.
E’ presente nel cibo (manzo, latte, tonno ecc.) ma in quantità assai ridotte che mai e poi mai potrebbero sostituire una supplementazione esterna.
La maggior parte degli studi attualmente presenti in letteratura scientifica associa l’assunzione di creatina, cronica e non, a miglioramenti della performance anaerobica (forza e potenza) [1,2,3,4]. Anche l’ipertrofia muscolare è influenzata positivamente da questo composto [5,6].
Effetti della creatina su sforzi brevi (grafico di sinistra, ≤ 30″) e sforzi un po’ più duraturi (grafico a sinistra, 30-150″). Oltre i 150″ di sforzo continuo, i miglioramenti sono meno netti. Legenda: AE = arm ergometry; BE = cicloergometro (cyclette); IK = forza isocinetica di torsione; IM = forza isometrica; IT = forza isotonica; JP = salto; RN = sprint (corsa); SK = pattinaggio veloce; SW = nuoto; KY = kayaking. Branch J. D. (2003) [21].
Come per la questione EPO di cui avevamo già parlato qui, su un certo numero di soggetti la creatina non ha alcun effetto (soggetti “non-responder”), i quali rappresentano indicativamente il 20-30% della popolazione [7]. Uno studio del 2004 sostiene che i soggetti “responder” tendano ad avere dei livelli di creatina intramuscolare abbastanza bassi e per questa ragione, una volta assunta la creatina con gli integratori, i livelli di quest’ultima cambino significativamente (in positivo). I ricercatori del medesimo studio, ritengono inoltre che i “responder” abbiano mediamente più massa magra e fibre muscolari rapide (tipo II) [8].
Oltre a quanto già detto, come riportano molti autori, la creatina accelera la supercompensazione del glicogeno se assunta in concomitanza con dei carboidrati, i quali a loro volta danno una mano nello stoccaggio della creatina nei muscoli [22,23,24].
Durante il primo mese di assunzione si ha sempre un aumento di peso (circa 1-2 kg) derivante dalla forte ritenzione idrica che causa questo composto, ciò in sport con classi di peso può essere un problema. Il corpo si libera di questa acqua intracellulare 2-3 settimane dopo lo stop della assunzione di creatina. Uno scarico, o stop definitivo, può aver senso solo ed esclusivamente per un discorso di peso, utilità per il proprio sport, costi (la creatina non la regalano) e feedback dell’atleta, dato che essa non dà assuefazione.
Presunto antagonismo con la caffeina
Più di 20 anni fa, un celebre studio di Vandenberghe e colleghi [9] notò, quasi per caso, un certo antagonismo fra la creatina e la caffeina. Lo studio tuttavia presentava grossi limiti (breve durata, un solo test per misurare la variazione di performance, un periodo di scarico troppo breve, un campione poco ampio, dosi di caffeina forse eccessive). Negli anni a seguire, sono state pubblicate una miriade di ricerche scientifiche che hanno smentito questo antagonismo [10,11,12,13,14]. Il fatto che molte di esse abbiano usato protocolli di assunzione-scarico differenti dallo studio di Vandenberghe citato ad inizio paragrafo, non esclude del tutto che fare un carico di creatina a pochi giorni da una competizione (20-25 grammi/dì per 4-5 giorni di fila), possa annullare gli effetti positivi della caffeina, o viceversa. Questo però solamente in acuto.
Campi di utilizzo
Bodybuilding e fitness, powerlifting, weightlifting, atletica leggera (nonostante l’aumento di peso scaturito dalla sostanza). E’ inoltre utilizzata nelle pratiche di taglio del peso, infatti, dopo la disidratazione, abbinata a molta acqua, aiuta a richiamare liquidi a livello intracellulare.
Tipologie
Esistono vari tipi di creatina, dalla classica monoidrato alla etil estere o alcalina. Dietro a tutte queste suddivisioni, purtroppo, c’è molto marketing. La più conveniente in termini di costi-benefici è la monoidrato (creatina combinata con una molecola di acqua). Le altre forme, quasi tutte più costose di quest’ultima, non apportano chissà che effetti superiori, anzi, teoricamente la creatina etil estere (CEE) è anche peggiore della monoidrato. Perché? Perché è stato visto che si degrada subito, convertendosi quasi immediatamente in creatinina (suo primario prodotto metabolico), risultando quindi inefficace per l’incremento delle prestazioni e della massa muscolare [15,16]. “L’integrazione con creatina etil estere ha mostrato un grande aumento nel siero (sanguigno, NdR) dei livelli di creatinina senza aumentare in modo significativo i livelli di creatina totale nei muscoli. Questo può voler dire che una larga porzione di creatina etil estere è stata degradata all’interno del tratto gastrointestinale dopo l’ingestione. Inoltre sembra che l’assorbimento di creatina etil estere da parte dei muscoli non è abbastanza imponente da aumentare i livelli di creatina nei muscoli stessi senza prima una significativa degradazione di creatina in creatinina” [17].
Da sinistra a destra: livelli sierici di creatina, creatinina e contenuto di creatina nei muscoli. PLA = placebo; CRT = creatina monoidrato; CEE: creatina etil estere (Spilane M. et al, 2009)
Discorso simile per la creatina alcalina, la quale teoricamente dovrebbe migliorare l’assorbimento della creatina grazie ad una riduzione della conversione in creatinina, la cosa però è stata smentita da uno studio di qualche anno fa [18]. O la citrato, che ha dimostrato buoni risultati ma non è mai stata confrontata con la monoidrato.
Per di più, una recentissima review di Andres S. e colleghi, oltre ad aver ribadito la sicurezza della monoidrato, ha sconsigliato la creatina orotata e gluconato perché apparentemente poco sicure per la salute [25].
In definitiva, marketing a parte, la monoidrato sembra a tutti gli effetti essere la migliore forma di creatina attualmente in commercio (e costa anche meno…).
Effetti collaterali
I problemi che si potrebbero manifestare con l’uso, e abuso, di creatina sono principalmente due: disturbi gastrointestinali e diarrea.
Nonostante in passato sia stato fatto un po’ di terrorismo psicologico sulla questione creatina-danni renali. La scienza ha smentito questi ipotetici problemi ai reni derivanti dall’assunzione di creatina in soggetti sani [19].
Dosaggio
Se ne consiglia un’assunzione di 3-5 g/dì. Quella del carico iniziale di creatina (20-25 grammi nei primi giorni) è una teoria ormai superata, in quanto nel cronico un dosaggio più contenuto ma costante dà i medesimi risultati di uno, almeno inizialmente, più spinto [20]. Tuttavia, l’assunzione di 20-25 g/dì può avere senso in acuto. Se ad esempio al week-end c’è una gara, un atleta potrebbe ricorrere al carico di creatina (diviso in singole dosi di 5 grammi l’una) a partire dal lunedì della stessa settimana.
Esempio pratico
Lunedì: 20-25 g
Martedì: 20-25 g
Mercoledì: 20-25 g
Giovedì: 20-25 g
Venerdì: 20-25 g
Sabato: 5 g
Domenica: gara
Può essere presa in vari momenti della giornata (in compresse o polvere), appena svegli, in concomitanza o 30 minuti dopo un pasto, 90 minuti prima di un allenamento o poco dopo.
Conclusioni
Che dire, siamo davanti ad uno degli integratori alimentari più studiati e più efficaci in assoluto. E’ consigliabile provarla almeno negli sport di forza, potenza e anaerobici (alta intensità e breve durata). Meno indicata per gli sport più aerobici come il nuoto o le corse di lunga durata (maratona), tenendo anche conto del problema legato al leggero aumento del peso.
Ovviamente prima bisogna guardare alle priorità alimentari e concentrarsi sull’allenamento, la creatina non ha nulla di miracoloso, tuttavia può essere un valido alleato per molti.
1 Buford T. W. et al. – International Society of Sports Nutrition position stand: creatine supplementation and exercise (2007)
2 Gualano B. et al. – In sickness and in health: the widespread application of creatine supplementation (2012)
3 Kreider R. B. – Effects of creatine supplementation on performance and training adaptations (2003)
4 Preen D. et al. – Effect of creatine loading on long-term sprint exercise performance and metabolism (2001)
5 Stone M. H. et al. – Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players (1999)
6 Jones A. L. et al. – Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players (1999)
7 Greenhaff L. P. – The nutritional biochemistry of creatine (1997)
8 Syrotuik D. G. et al. – Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders (2004)
9 Vandenberghe K. et al. – Caffeine counteracts the ergogenic action of muscle creatine loading (1996)
10 Doherty M. et al. – Caffeine is ergogenic after supplementation of oral creatine monohydrate (2002)
11 Spradley B. D. et al. – Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance (2012)
12 Lee C. L. et al. – Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance (2011)
13 Vanakoski J. et al. – Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations (1998)
14 Fukuda D. H. – The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans (2010)
15 Chanutin A. – The fate of creatine when administered to man (1926)
16 Schantz E. et al. – Creatine ethyl ester (1955)
17 Spillane M. et al. – The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels (2009)
18 Jagim A. R. et al. – A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate (2012)
19 Pline K. et al. – The effect of creatine intake on renal function (2005)
20 N. Wilder et al. – The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players (2001)
21 Branch J. D. – Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis (2003)
22 Green et al. – Creatine ingestion augments muscle creatine uptake and glycogen synthesis during carbohydrate feeding in man (1996)
23 Nelson A. G. et al. – Muscle glycogen supercompensation is enhanced by prior creatine supplementation (2001)
24 Derave W. et al. – Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans (1985)
25 Andres S. et al. – Creatine and creatine forms intended for sports nutrition (2017)
I massaggi sono veramente utili per il recupero fisico? Scopriamolo insieme!
Concetti basilari
Se utilizzato nella maniera più opportuna, il massaggio può favorire recupero fisico e performance. Le tecniche manuali che si utilizzano nel massaggio sportivo sono lo (altro…)
E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!
Cos’è l’EPO?
Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.
Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.
N.B: benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).
Come incrementare i livelli di EPO
Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].
Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.
Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.
Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.
Risposte fisiologiche e adattamenti all’allenamento ad alta quota
La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].
Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].
*Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.
In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].
Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2, questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.
La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.
Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].
Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.
Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.
Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.
Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.
“La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione. Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.
Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.
L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].
Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.
Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.
Sulla questione muscolare non si sa molto altro.
Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).
Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:
diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
aumento del nervosismo;
peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?
L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.
Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.
Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.
Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.
In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.
Allenarsi in alto e gareggiare in basso
Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.
Allenarsi in basso e gareggiare in alto (live high and train low)
Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.
Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].
Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).
Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]
Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.
Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.
Controindicazioni più e meno gravi dell’allenamento in altura
Scottature solari e oftalmia delle nevi;
irritazioni delle vie respiratorie;
mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
emorragia retinica (si verifica dai 6000 m in poi).
Due parole sulla training mask (TM)
Negli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.
Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.
A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).
Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]
“Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro: – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici. – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%). – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta. – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti). – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].
Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).
Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].
Conclusioni
Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.
Willmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005) Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017) Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016) 1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991) 2 Strømme A. B. – Training at altitude (1980) 3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983) 4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007) 5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996) 6 Schoene et al. – Limits of human lung function at high altitude (2001) 7 E. R. Buskirk et al. – Maximal performance at altitude and on return from altitude in conditioned runnerd (1967) 8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate 9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975) 10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967) 11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967) 12 Schmitt et al. – ??? (2008) fonte primaria errata sul libro di riferimento 13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000) 14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001) 15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004) 16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989) 17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988) 18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005) 19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973) 20 Chapman et al. – Individual variation in response to altitude training (1998) 21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002) 22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016) 23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016) 24 Ness J. – Is live high/train low the ultimate endurance training model?
Non è raro vedere atleti, soprattutto sui social network, immergersi nell’acqua gelida. Ma cosa c’è dietro a tutto questo? Saldi principi fisiologici oppure le solite mode passeggere? Scopriamolo insieme!
Quello che segue è un riassunto ed adattamento di un articolo in lingua straniera riportato su Science for Sport. Buona lettura!
Introduzione
Si ricorre a tecniche di recupero come quella delle immersioni in acqua fredda per minimizzare il rischio di infortunio e per evitare il sovrallenamento (overtraining).
Gli effetti delle immersioni in acqua fredda non sono ancora del tutto chiari, si ipotizza che siano utili per il recupero muscolare e la riduzione degli stati infiammatori sia per gli atleti di sport di forza/potenza (allenamento con i sovraccarichi) che di resistenza (corsa, ciclismo). Recenti studi sostengono che il tempo ottimale di immersione (altro…)
Le sostanze definite eccitanti, o stimolanti, sono sostanze in grado di simulare l’azione del sistema nervoso simpatico. Questo gruppo di sostanze è assai vasto, gli stimolanti possono infatti avere effetti molto diversi fra loro, hanno in comune però la capacità di aumentare la permanenza in circolo di catecolamine, neurotrasmettitori che rivestono un importante ruolo nel controllo delle funzioni vegetative, motorie e psichiche, data la loro interazione con il sistema nervoso simpatico.