Un termine che non cade mai in disuso è indubbiamente quello che avete appena letto nel titolo di questo articolo, il deallenamento.
Il deallenamento è stato trattato ed approfondito in un episodio del nostro Podcast ascoltabile (e scaricabile) gratuitamente al seguente link.
Cos’è?
Per deallenamento (detraining) si intende la perdita, più o meno marcata, di tutti quegli adattamenti fisiologici che l’organismo aveva avuto tramite l’allenamento fisico. Da quelli (altro…)
La creatina è indubbiamente uno degli integratori più diffusi ed utilizzati nell’ambiente della palestra. In questo articolo, dal titolo sicuramente provocativo, cercheremo di parlare di tutto ciò che riguarda questo composto (fisiologia, materiale scientifico, rapporto con altri integratori, dosaggio, eccetera). Buona lettura!
Cenni di chimica e fisiologia
La creatinaè un composto ergogenico che nel nostro corpo si trova per un 40% in forma libera, per un 50% in forma fosforilata e per il restante 10% è contenuta nel fegato, ove è sintetizzata da due aminoacidi ed un coenzima, reni e cervello. Il nostro organismo ne produce circa 1 grammo al giorno. La creatina viene utilizzata principalmente per la sintesi dell’ATP (adenosintrifosfato) del sistema anaerobico alattacido.
E’ presente nel cibo (manzo, latte, tonno ecc.) ma in quantità assai ridotte che mai e poi mai potrebbero sostituire una supplementazione esterna.
La maggior parte degli studi attualmente presenti in letteratura scientifica associa l’assunzione di creatina, cronica e non, a miglioramenti della performance anaerobica (forza e potenza) [1,2,3,4]. Anche l’ipertrofia muscolare è influenzata positivamente da questo composto [5,6].
Effetti della creatina su sforzi brevi (grafico di sinistra, ≤ 30″) e sforzi un po’ più duraturi (grafico a sinistra, 30-150″). Oltre i 150″ di sforzo continuo, i miglioramenti sono meno netti. Legenda: AE = arm ergometry; BE = cicloergometro (cyclette); IK = forza isocinetica di torsione; IM = forza isometrica; IT = forza isotonica; JP = salto; RN = sprint (corsa); SK = pattinaggio veloce; SW = nuoto; KY = kayaking. Branch J. D. (2003) [21].
Come per la questione EPO di cui avevamo già parlato qui, su un certo numero di soggetti la creatina non ha alcun effetto (soggetti “non-responder”), i quali rappresentano indicativamente il 20-30% della popolazione [7]. Uno studio del 2004 sostiene che i soggetti “responder” tendano ad avere dei livelli di creatina intramuscolare abbastanza bassi e per questa ragione, una volta assunta la creatina con gli integratori, i livelli di quest’ultima cambino significativamente (in positivo). I ricercatori del medesimo studio, ritengono inoltre che i “responder” abbiano mediamente più massa magra e fibre muscolari rapide (tipo II) [8].
Oltre a quanto già detto, come riportano molti autori, la creatina accelera la supercompensazione del glicogeno se assunta in concomitanza con dei carboidrati, i quali a loro volta danno una mano nello stoccaggio della creatina nei muscoli [22,23,24].
Durante il primo mese di assunzione si ha sempre un aumento di peso (circa 1-2 kg) derivante dalla forte ritenzione idrica che causa questo composto, ciò in sport con classi di peso può essere un problema. Il corpo si libera di questa acqua intracellulare 2-3 settimane dopo lo stop della assunzione di creatina. Uno scarico, o stop definitivo, può aver senso solo ed esclusivamente per un discorso di peso, utilità per il proprio sport, costi (la creatina non la regalano) e feedback dell’atleta, dato che essa non dà assuefazione.
Presunto antagonismo con la caffeina
Più di 20 anni fa, un celebre studio di Vandenberghe e colleghi [9] notò, quasi per caso, un certo antagonismo fra la creatina e la caffeina. Lo studio tuttavia presentava grossi limiti (breve durata, un solo test per misurare la variazione di performance, un periodo di scarico troppo breve, un campione poco ampio, dosi di caffeina forse eccessive). Negli anni a seguire, sono state pubblicate una miriade di ricerche scientifiche che hanno smentito questo antagonismo [10,11,12,13,14]. Il fatto che molte di esse abbiano usato protocolli di assunzione-scarico differenti dallo studio di Vandenberghe citato ad inizio paragrafo, non esclude del tutto che fare un carico di creatina a pochi giorni da una competizione (20-25 grammi/dì per 4-5 giorni di fila), possa annullare gli effetti positivi della caffeina, o viceversa. Questo però solamente in acuto.
Campi di utilizzo
Bodybuilding e fitness, powerlifting, weightlifting, atletica leggera (nonostante l’aumento di peso scaturito dalla sostanza). E’ inoltre utilizzata nelle pratiche di taglio del peso, infatti, dopo la disidratazione, abbinata a molta acqua, aiuta a richiamare liquidi a livello intracellulare.
Tipologie
Esistono vari tipi di creatina, dalla classica monoidrato alla etil estere o alcalina. Dietro a tutte queste suddivisioni, purtroppo, c’è molto marketing. La più conveniente in termini di costi-benefici è la monoidrato (creatina combinata con una molecola di acqua). Le altre forme, quasi tutte più costose di quest’ultima, non apportano chissà che effetti superiori, anzi, teoricamente la creatina etil estere (CEE) è anche peggiore della monoidrato. Perché? Perché è stato visto che si degrada subito, convertendosi quasi immediatamente in creatinina (suo primario prodotto metabolico), risultando quindi inefficace per l’incremento delle prestazioni e della massa muscolare [15,16]. “L’integrazione con creatina etil estere ha mostrato un grande aumento nel siero (sanguigno, NdR) dei livelli di creatinina senza aumentare in modo significativo i livelli di creatina totale nei muscoli. Questo può voler dire che una larga porzione di creatina etil estere è stata degradata all’interno del tratto gastrointestinale dopo l’ingestione. Inoltre sembra che l’assorbimento di creatina etil estere da parte dei muscoli non è abbastanza imponente da aumentare i livelli di creatina nei muscoli stessi senza prima una significativa degradazione di creatina in creatinina” [17].
Da sinistra a destra: livelli sierici di creatina, creatinina e contenuto di creatina nei muscoli. PLA = placebo; CRT = creatina monoidrato; CEE: creatina etil estere (Spilane M. et al, 2009)
Discorso simile per la creatina alcalina, la quale teoricamente dovrebbe migliorare l’assorbimento della creatina grazie ad una riduzione della conversione in creatinina, la cosa però è stata smentita da uno studio di qualche anno fa [18]. O la citrato, che ha dimostrato buoni risultati ma non è mai stata confrontata con la monoidrato.
Per di più, una recentissima review di Andres S. e colleghi, oltre ad aver ribadito la sicurezza della monoidrato, ha sconsigliato la creatina orotata e gluconato perché apparentemente poco sicure per la salute [25].
In definitiva, marketing a parte, la monoidrato sembra a tutti gli effetti essere la migliore forma di creatina attualmente in commercio (e costa anche meno…).
Effetti collaterali
I problemi che si potrebbero manifestare con l’uso, e abuso, di creatina sono principalmente due: disturbi gastrointestinali e diarrea.
Nonostante in passato sia stato fatto un po’ di terrorismo psicologico sulla questione creatina-danni renali. La scienza ha smentito questi ipotetici problemi ai reni derivanti dall’assunzione di creatina in soggetti sani [19].
Dosaggio
Se ne consiglia un’assunzione di 3-5 g/dì. Quella del carico iniziale di creatina (20-25 grammi nei primi giorni) è una teoria ormai superata, in quanto nel cronico un dosaggio più contenuto ma costante dà i medesimi risultati di uno, almeno inizialmente, più spinto [20]. Tuttavia, l’assunzione di 20-25 g/dì può avere senso in acuto. Se ad esempio al week-end c’è una gara, un atleta potrebbe ricorrere al carico di creatina (diviso in singole dosi di 5 grammi l’una) a partire dal lunedì della stessa settimana.
Esempio pratico
Lunedì: 20-25 g
Martedì: 20-25 g
Mercoledì: 20-25 g
Giovedì: 20-25 g
Venerdì: 20-25 g
Sabato: 5 g
Domenica: gara
Può essere presa in vari momenti della giornata (in compresse o polvere), appena svegli, in concomitanza o 30 minuti dopo un pasto, 90 minuti prima di un allenamento o poco dopo.
Conclusioni
Che dire, siamo davanti ad uno degli integratori alimentari più studiati e più efficaci in assoluto. E’ consigliabile provarla almeno negli sport di forza, potenza e anaerobici (alta intensità e breve durata). Meno indicata per gli sport più aerobici come il nuoto o le corse di lunga durata (maratona), tenendo anche conto del problema legato al leggero aumento del peso.
Ovviamente prima bisogna guardare alle priorità alimentari e concentrarsi sull’allenamento, la creatina non ha nulla di miracoloso, tuttavia può essere un valido alleato per molti.
1 Buford T. W. et al. – International Society of Sports Nutrition position stand: creatine supplementation and exercise (2007)
2 Gualano B. et al. – In sickness and in health: the widespread application of creatine supplementation (2012)
3 Kreider R. B. – Effects of creatine supplementation on performance and training adaptations (2003)
4 Preen D. et al. – Effect of creatine loading on long-term sprint exercise performance and metabolism (2001)
5 Stone M. H. et al. – Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players (1999)
6 Jones A. L. et al. – Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players (1999)
7 Greenhaff L. P. – The nutritional biochemistry of creatine (1997)
8 Syrotuik D. G. et al. – Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders (2004)
9 Vandenberghe K. et al. – Caffeine counteracts the ergogenic action of muscle creatine loading (1996)
10 Doherty M. et al. – Caffeine is ergogenic after supplementation of oral creatine monohydrate (2002)
11 Spradley B. D. et al. – Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance (2012)
12 Lee C. L. et al. – Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance (2011)
13 Vanakoski J. et al. – Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations (1998)
14 Fukuda D. H. – The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans (2010)
15 Chanutin A. – The fate of creatine when administered to man (1926)
16 Schantz E. et al. – Creatine ethyl ester (1955)
17 Spillane M. et al. – The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels (2009)
18 Jagim A. R. et al. – A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate (2012)
19 Pline K. et al. – The effect of creatine intake on renal function (2005)
20 N. Wilder et al. – The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players (2001)
21 Branch J. D. – Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis (2003)
22 Green et al. – Creatine ingestion augments muscle creatine uptake and glycogen synthesis during carbohydrate feeding in man (1996)
23 Nelson A. G. et al. – Muscle glycogen supercompensation is enhanced by prior creatine supplementation (2001)
24 Derave W. et al. – Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans (1985)
25 Andres S. et al. – Creatine and creatine forms intended for sports nutrition (2017)
Quali adattamenti fisiologici possono portare differenti tempi di recupero fra una serie e l’altra durante l’allenamento in palestra? Sono correlati in qualche modo all’aumento della massa muscolare? Scopriamolo insieme!
Per trattare questo argomento, prenderemo in esame una nota review sistematica di Schoenfeld B. J. e colleghi pubblicata sull’European Journal of Sport Science [1].
Il cedimento, altro non è che una delle tante tecniche per ricercare la massima ipertrofia muscolare. Nelle prossime righe si tenterà di far luce su questa pratica, elencando i pro, i contro e dispensando un po’ consigli, senza voler salire in cattedra ma cercando ragionare insieme sulla questione.
Tipologie
Esistono principalmente due tipi di cedimento muscolare:
Cedimento tecnico: mantenendo una buona esecuzione tecnica, non si è più in grado di portare a termine una o più ripetizioni (l’unico modo per farlo sarebbe “sporcare” la tecnica).
Cedimento concentrico: il muscolo target non è più in grado di contrarsi, il peso non può più essere sollevato.
A sua volta, il cedimento concentrico si suddivide in:
C. concentrico neurale: quando il sistema nervoso centrale (SNC) è “cotto” e non riesce quindi a garantire alcuna contrazione muscolare (ciò capita soprattutto quando si cerca di sollevare grossi carichi).
C. concentrico metabolico: le unità motorie (um), anche se reclutate, non sono più in grado di contrarsi efficientemente in quanto sature di acido lattico (congestione lattacida).
Applicazioni pratiche
Se si ricorre al cedimento, soprattutto quello concentrico metabolico, è meglio limitarsi ad eseguire esercizi monoarticolari, che coinvolgono quindi un minor numero di muscoli, magari come finisher della seduta di allenamento. Come avevamo già detto in passato, ogni stimolo allenante può essere utile all’ipertrofia e quello metabolico non fa eccezione (anche tenendo conto dell’elevato TUT). Sui muscoli più grandi, c’è il rischio che i DOMS (indolenzimento muscolare) vengano protratti nel tempo, andando ad influenzare negativamente gli allenamenti dei giorni successivi.
Anche se si parla di cedimento concentrico neurale, vale la stessa cosa. Meglio limitarlo ai distretti muscolari più piccoli e verso la fine della seduta di allenamento, in modo da non cuocere il SNC, cosa che comprometterebbe gli esercizi successivi ed il recupero fra una seduta di allenamento e l’altra.
A livello metabolico si è visto che il cedimento muscolare a basse ripetizioni (cinque per la precisione) altera la produzione di acido lattico (glicolisi anaerobica), la deplezione della fosfocreatina (PCr) e l’abbassamento delle scorte di ATP (adenosin trifosfato) in misura molto minore rispetto al cedimento muscolare su ripetizioni più alte (dieci) [6].
Gorostiaga E. M. et al. (2012)
Riguardo al cedimento tecnico possiamo affermare che è più o meno pericoloso a seconda degli esercizi. Inarcare la schiena e sfruttare strani effetti di rimbalzo non è certo il massimo per la sicurezza delle articolazioni. Quello tecnico è il tipo cedimento che più di ogni altro va limitato, soprattutto sulle alzate che consentono di sollevare grandi carichi (squat, panca piana e varianti, ecc.).
Ma i neofiti? I principianti non hanno la capacità di esprimere grandi intensità sotto carico, per loro il cedimento muscolare è, il più delle volte, un’arma di scarsa utilità. Meglio se usata per gli atleti intermedi ed avanzati.
Benché la letteratura scientifica sottolinei che le priorità di un allenamento mirato allo sviluppo della massa muscolare siano altre [1], è difficile parlare di cedimento muscolare tramite gli studi scientifici perché il cedimento non è sempre facile da catalogare. Tuttavia, prendendo in esame quelli più quotati, possiamo affermare che…
Per Izquierdo M. e colleghi [2], in 16 settimane di allenamento mirate all’incremento della forza, potenza e resistenza muscolare, non ci sono state variazioni significative fra i soggetti, se non per il rendimento muscolare nella panca piana (75% 1RM).
Drinkwater E. J. e coll. [3] in acuto hanno evidenziato un lieve miglioramento della potenza muscolare nell’allenamento della panca piana con un carico da 6RM (sei ripetizioni massime possibili) utilizzato per 6 settimane di allenamento.
Una revisione di Willardson J. M. e coll. [4] non evidenzia differenze rilevanti fra un allenamento con cedimento ed un altro senza. Sottolinea però l’importanza di limitare questa pratica, soprattutto se si parla di cedimento tecnico.
Nel 2010, un altro studio di Izquierdo e coll. [7] ha messo in luce miglioramenti della forza massimale e della potenza negli atleti che non ricercavano continuamente il cedimento muscolare. Per questo motivo quasi tutti i powerlifters si affidano al buffer (mantenere un certo margine di distanza dal cedimento), raggiungendo magari il cedimento nell’ultima serie di un esercizio.
Conclusioni
Per terminare, come già ribadito più volte, il cedimento muscolare in alcuni contesti trova tranquillamente il suo spazio, migliorando i livelli di forza e lo sviluppo muscolare, [5] va tuttavia usato con parsimonia, eccedere può potenzialmente portare molti più problemi che benefici. Perché è vero che, a parità di volume, il cedimento può garantire dei risultati mediamente superiori (massa magra), tuttavia non potrebbe essere meglio tenere il cedimento come “asso nella manica” da giocarsi nell’ultima serie di un determinato esercizio, dopo aver accumulato un certo volume allenante, piuttosto che tentare di portare a cedimento ogni serie di ogni esercizio fin da subito? Oppure, come consiglia il noto ricercatore e coach Chris Beardsley, per massimizzare l’ipertrofia tramite il cedimento, si potrebbe aumentare il recupero fra le serie (a discapito della densità) o ricorrere a super serie (super set) alternando esercizi per muscoli, cosiddetti, agonisti e antagonisti. Come? Passando da, per esempio, esercizi per il dorso (lat machine) ad esercizi per il petto (chest press). Esempio: 10 ripetizioni alla lat machine (raggiungendo il cedimento), 10 ripetizioni alla chest press (cedimento) e tot minuti di recupero e via di nuovo ad accorpare questi due esercizi per X numero di serie. “There are basically two ways to get around the problem: (1) take more rest between sets (or use agonist-antagonist supersets to get lots of rest between agonist exercises), and (2) only go to failure on the final set“.
1 Schoenfeld B. J. et al. – Influence of Resistance Training Frequency on Muscular Adaptations in Well-Trained Men (2015)
2 Izquierdo M. et al. – Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains (2006)
3 Drinkwate E. J. et al. – Training leading to repetition failure enhances bench press strength gains in elite junior athletes (2005)
4 Willardson J. M. et al. – Effect of Short-Term Failure Versus Nonfailure Training on Lower Body Muscular Endurance (2008)
5 Nobrega R. S. et al. – Is Resistance Training to Muscular Failure Necessary? (2016)
6 Gorostiaga E. M. et al. – Energy Metabolism during Repeated Sets of Leg Press Exercise Leading to Failure or Not (2012)
7 Izquierdo M. et al. – Concurrent endurance and strength training not to failure optimizes performance gains (2010)
L’alcol fa ingrassare? Contribuisce a formare quell’odiosa pancetta, non facendo così emergere la tanto agognata tartaruga? Influisce sulle prestazioni fisiche?
Cerchiamo di scoprirlo insieme!
Un po’ di nozioni generali
Con la parola alcol si intende l’alcol etilico, la cui formula bruta è C2H5OH. Più in generale, si usa il termine alcol quando si accenna ad una sostanza che presenta un gruppo idrossilico (OH).
L’alcol, anche se si perfettamente sobri, è presente nel sangue (altro…)
Sicuramente vi sarà capitato almeno una volta di provare dolore ai muscoli dopo qualche sforzo fisico. Bene, quel dolore non è altro che del DOMS, ovvero: indolenzimento muscolare a insorgenza ritardata. Scopriamo insieme di cosa si tratta!
Cenni di fisiologia
In passato si ipotizzava che i DOMS (delayed onset muscle soreness) derivassero dall’accumulo di acido lattico, negli anni a venire è però stato dimostrato che l’acido lattico e gli scarti metabolici non c’entravano, almeno non sui dolori ad insorgenza ritardata. Si tratta infatti, secondo le teorie più accreditate, di micro-lacerazioni a livello muscolare derivanti soprattutto da contrazioni eccentriche [1,2,3].
Certi studiosi suggeriscono che alcuni radicali liberi (ROS) possano concorrere nella formazione dei DOMS [4], altri che interferiscano fattori metabolici e neurologici [5,6]. Ma date le scarse prove, quella del danno muscolare rimane comunque la teoria più attendibile.
L’indolenzimento muscolare a insorgenza ritardata fa perdere forza alla contrazione muscolare. Secondo Warren e colleghi [7] questo è imputabile a tre macro-fattori: il danno al tessuto muscolare, una disfunzione nell’ambito del processo di accoppiamento eccitazione-contrazione ed una perdita delle proteine contrattili (il tutto è illustrato nella figura a sinistra).
Post allenamento
I DOMS insorgono a 8-12h dal termine dell’allenamento
Si acutizzano a 24-48h dal termine dell’allenamento
Diminuiscono a 48-72h dal termine dell’allenamento
Scompaiono a 72-120 ore dal termine dell’allenamento
Le cifre riportate sopra, ovviamente, sono molto indicative.
Se i DOMS sono particolarmente lievi, non è necessario rimandare gli allenamenti, un buon riscaldamento può far cessare l’indolenzimento.
Risposta tardiva all’esercizio fisico di diversi indici fisiologici (la densità di colore della barra corrisponde all’intensità della risposta nel tempo indicato) [8]
Tecniche per ridurli
Alcuni modi per ridurre i DOMS sono i seguenti:
Iniziare un nuovo programma/scheda di allenamento con un’intensità moderata, alzandola piano piano nel corso delle settimane
Eseguire immersioni in acqua fredda (temperatura di 8-15° C per 11-15 minuti di bagno). Maggiori informazioni le trovate in questo articolo.
Assunzione di una buona quota giornaliera di proteine
Prendere della caffeina tramite caffè o compresse. Si è vista infatti una correlazione fra il calo del dolore muscolare e l’assunzione di questa sostanza eccitante [9].
Caffeina e riduzione dei DOMS (Hurley C. F. et al., 2013)
Conclusioni
L’indolenzimento muscolare, acuto e ad insorgenza ritardata, è un evento assolutamente fisiologico. Tenere “a bada” i DOMS non è di fondamentale importanza per chi si allena in palestra, magari con schede full-body, 2-3 volte a settimana o per chi pratica sport a livello dilettantistico con una frequenza moderata. Tuttavia, per gli sportivi professionisti, o per gli agonisti che puntano a competere ad alti livelli, tenere a bada i DOMS è spesso di aiuto per limitare i dolori e non sfociare nell’overtraining.
Wilmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005) 1 Stone M. H. et al. – A hypothetical model for strength training (1981) 2 Schwane J. A. et al. – Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running (1983) 3 Schwane J. A. et al. – Is Lactic Acid Related to Delayed-Onset Muscle Soreness? (1983) 4 Close G. L. et al. – Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species (2004) 5 Malm C. et al. – Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running (2004) 6 Ayles S. et al. – Vibration-induced afferent activity augments delayed onset muscle allodynia (2011) 7 Warren G. L. et al. – Excitation-contraction uncoupling: major role in contraction-induced muscle injury (2001) 8 Evans W. J. et al. – The metabolic effects of exercise-induced muscle damage (1991) 9 Hurley C. F. et al. – The effect of caffeine ingestion on delayed onset muscle soreness (2013)
Prima di ogni training camp, sia che si tratti di professionismo o di semplice dilettantismo, è buona cosa far effettuare agli atleti dei test specifici, per valutare lo stato di forma e capire quali sono i punti deboli e quali quelli di forza. Durante l’imminente macrociclo di allenamento, si andrà ovviamente a lavorare di più sui primi e un po’ meno sui secondi. Per chi fosse poco ferrato in materia è consigliabile fare prima un breve ripasso sulle capacità condizionali e coordinative (qui) e sui sistemi energetici (qui).
Ovviamente è di fondamentale importanza la tecnica. Possedere il corretto schema motorio consente di reclutare i giusti muscoli (tenendo comunque presente che si tratta di esercizi multiarticolari) e di limitare il rischio infortunio.
*le cifre rappresentano i carichi massimali che gli atleti riescono a sollevare (1RM) riferiti al proprio peso corporeo (Bw, bodyweight). Riguardo alle trazioni, il peso è il sovraccarico legato alla vita tramite la cintura. Ad esempio, un atleta che pesa 100 kg (x0,25 o x0,5) deve riuscire ad eseguire una trazione alla sbarra completa con una zavorra di almeno 25 kg.
A differenza degli esercizi di forza massimale, qui entrano in gioco veramente troppi fattori soggettivi. E’ quindi molto difficile stabilire una scala di valori numerici per i vari esercizi. Eccetto che per il push press: 0,75-1xBw.
Push press
Vertical jump
Broad jump
Plyo box jump up
Gli esercizi esplosivi riguardano i piani di movimento tipici degli sport da combattimento (frontale e trasversale). Le unità di misura per tutti e tre i salti sono, ovviamente, in centimetri.
Forza resistente: push ups max reps; pull ups max reps, plank max time.
Qui c’è poco da spiegare, un esercizio di spinta, uno di trazione ed uno di isometria del core. Massimo numero di piegamenti sulle braccia consecutivi, massimo numero di trazioni prone (pull ups) ed infine un ponte (plank) mantenuto per più tempo possibile (senza perdere la contrazione addominale).
Piegamenti
Trazioni
Plank
Resistenza: test di Conconi (individuazione soglia anaerobica) e test di Cooper; è necessario per prima cosa prendere il battito cardiaco a riposo.
Il test di Conconi può essere effettuato in laboratorio (su cicloergometro), su tapis roulant o cyclette, in alternativa anche su pista di atletica [1]. Quest’ultima opzione è la meno attendibile e infatti sta cadendo un po’ in disuso. Il test di Cooper va invece fatto per avere un’idea generale della resistenza fisica dell’atleta. Consiste nel correre per dodici minuti di fila, cercando di coprire la maggior distanza possibile [2]. Sui tapis roulant più moderni, si possono eseguire entrambi questi test, insieme a molti altri (foto a sinistra).
Di seguito, i risultati ritenuti più o meno soddisfacenti (da molto bene a malissimo), espressi in metri, rapportati alla varie fasce di età (si parla ovviamente di uomini attivi e perfettamente sani). Ulteriori approfondimenti, compresi i valori validi per la popolazione femminile, li potete trovare qui.
Velocità: sprint sui 40 metri e test delle due linee.
Indicativamente dei tempi ritenuti soddisfacenti per gli sprint sui 40 m sono:
Uomini ♂ → mediocre: 5.20-5.40″; buono: 5.19-4.90″; ottimo: <4.90″.
Donne ♀ → mediocre: 5.90-5.65″; buono: 5.64-5.35″; ottimo: <5.35.
I valori si riferiscono ad atleti sani con un’età compresa fra 18-35 anni.
Il secondo test consiste invece nel tracciare due linee parallele, distanti circa 40 cm (immagine riportata sotto) e nell’andare con i piedi “avanti e indietro” per il maggior numero di volte possibile nel tempo concesso (dieci secondi).
Una singola ripetizione dell’esercizio (non ci sono spostamenti laterali)
Si parte con entrambi i piedi dietro ad una linea (B) e si portano i piedi oltre la linea opposta (A) uno per volta, alla massima velocità possibile, poi alla stessa maniera si riportano i piedi dietro alla line di partenza (B), e così via, senza interruzioni, fino allo scadere del tempo (10″). Nella figura sopra, tutti i passaggi (1-5) corrispondono ad una singola ripetizione dell’esercizio.
Mobilità articolare: sit and reach e test di mobilità delle spalle (sollevamento bracia con bacino retroverso e schiena appoggiata ad un muro).
Il sit and reach test consiste nel ricercare la massima estensione della catena muscolare posteriore da seduti, inclinando il busto in avanti (figura sotto). Le punte delle dita devono cercar di toccare la porzione della tavola più distante possibile. Si salverà il risultato facendo un segno proprio sulla superficie della tavola posizionata poco sopra i piedi ed annotando la distanza raggiunta. A questo link potete trovare un video pratico del test.
Invece nell’altro test, dopo un breve riscaldamento, l’atleta si posiziona di spalle ad un muro, con la schiena perfettamente aderente alla parete in ogni suo punto (zona lombare compresa).
Successivamente deve sollevare gli arti superiori provando a toccare il muro alle proprie spalle, mantenendo ovviamente l’articolazione del gomito bloccata. Si misura con un metro (o righello) la distanza delle mani dalla parete.
Con le suddette regole, la maggior parte delle persone non è in grado di arrivare a toccare la parete. Quando la mobilità richiesta in questa prova viene raggiunta, si passa ad esercizi più impegnativi, di cui magari parleremo in futuri articoli.
Stabilità ginocchio: lateral and medial single leg hop series (video sotto). Con questo esercizio si valuta la stabilità dell’articolazione del ginocchio, una delle più soggette agli infortuni. Nel caso venissero notate delle problematiche (valgismo, varismo, scarso equilibrio, errato appoggio monopodalico), queste dovranno essere corrette, se necessario con la supervisione di un fisioterapista od un fisiatra.
Conclusioni
Quelli di cui abbiamo appena parlato sono i principali test che un preparatore atletico serio dovrebbe far eseguire ai propri atleti praticanti SdC. Ovviamente nulla vieta di sostituirne alcuni con delle varianti, ci sono anche vari fattori che entrano in gioco (disponibilità delle strutture, caratteristiche individuali dei fighters, infortuni pregressi, tipo di programmazione, tempo a disposizione, eccetera). I test vanno eseguiti all’inizio di ogni training camp e vanno poi ripetuti all’inizio del training camp successivo, confrontando i risultati.
Senza numeri sono tutti atti di fede
Detto ciò, non resta che salutarci ed augurare a tutti un buon allenamento!
Il curl eseguito alla panca Scott è un must dell’allenamento delle braccia. Ma siamo davvero sicuri che sia così efficace? Il titolo provocatorio dell’articolo suggerisce di no. Ora, partendo dalla biomeccanica e fisiologia muscolare, cercheremo di scoprire i pro ed i contro di questo esercizio. Buona lettura!
Descrizione e cenni biomeccanica
In breve, l’esecuzione è la seguente: partendo da seduti si impugna il bilanciere, portandolo a pochi centimetri dal viso tramite la flessione del gomito, fin dove l’escursione articolare lo permette. Una volta terminata la fase concentrica, si lascia scendere il bilanciere fino a distendere quasi completamente gli arti superiori. La presa è supina, quindi con i palmi rivolti verso l’alto, garantita dall’articolazione del gomito, la quale appunto permette anche i movimenti di flessione ed estensione dell’avambraccio sul braccio (fisiologia articolare).
Nelle palestre si vede eseguire questo esercizio quasi sempre con il bilanciere ma può essere anche svolto con dei manubri.
“Difetti” dell’esercizio
Teoricamente il curl su panca Scott dovrebbe coinvolgere maggiormente il capo breve del bicipite brachiale, ma in realtà i test scientifici non hanno mai rilevato grosse differenze nella sua attivazione nei tre principali tipi di curl: in piedi (DBC), da seduti su panca inclinata (IDC) e Scott (DPC) [1].
Va comunque ricordato che l’attività muscolare, misurabile tramite le elettromiografie, non è un parametro troppo attendibile per quanto riguarda l’ipertrofia muscolare (approfondimenti qui).
Infatti, seguendo il diagramma tensione-lunghezza del tessuto muscolare, se un sollevamento inizia quando il muscolo target è in massimo allungamento, il muscolo non può esercitare alti livelli di forza. Stessa cosa se il muscolo, prima che inizi il sollevamento, è già molto accorciato. Infatti, anche in questa situazione la forza espressa non è molta. Per di più, in quest’ultimo caso il ROM (range of motion) è anche scarso. Il primo caso è quello del curl su panca Scott, il secondo riguarda invece il curl su panca inclinata.
Invece, il classico curl in piedi è un po’ una via di mezzo fra le due modalità di esecuzione. Il muscolo infatti non parte né troppo allungato, né troppo accorciato.
Dato il range di movimento veramente scarso, il curl Scott è sembrerebbe essere quello meno ottimale per la crescita muscolare. E c’è anche da considerare il fatto che le ripetizioni parziali in massimo accorciamento, rispetto a quelle in massimo allungamento, non siano l’ideale per l’ipertrofia (minor rilascio di IGF-1, ridotto stimolo meccanico e metabolico) [2]. In aggiunta, quando l’avambraccio è perpendicolare, o quasi, al suolo (fine della fase concentrica), la tensione esercitata sul bicipite brachiale è molto bassa, vicino allo zero. E’ importante sottolineare ciò perché la tensione continua ed il TUT sono dei fattori fondamentali dello sviluppo ipertrofico.
Come fatto notare dal Dott. Andrea Roncari (qui), un altro studio presente in letteratura scientifica [3] ha evidenziato che una flessione della spalla di circa 90°, cioè quella imposta da alcuni modelli di panca Scott, non sia ottimale per l’attivazione del bicipite brachiale, meglio una flessione meno ampia (75°). L’angolo di flessione è il rapporto fra l’arto superiore completamente disteso ed il busto. Ad esempio, quello nella figura a sinistra è un angolo di soli 50°, la maggior parte dei modelli di panca Scott presenti nelle palestre hanno una struttura che impone degli angoli di flessione maggiori.
Conclusioni
Ovviamente il curl Scott, come del resto ogni altro esercizio, può trovare il suo posto all’interno di una sensata programmazione dell’allenamento. Già solo il variare lo stimolo allenante è uno dei principi base dell’ipertrofia muscolare (alternare gli esercizi, tecniche di intensità nuove, tempo sotto tensione ecc.). Pertanto occasionalmente può essere inserito in delle schede di allenamento, magari abbinato ad esercizi a ROM più ampio. Sui neofiti, soggetti alle prime armi carenti un po’ in tutti i distretti muscolari, sarebbe saggio evitare – o comunque limitare il più possibile – esercizi come questo. Meglio incrementare la massa muscolare in toto e solo successivamente andare a lavorare sui dettali.
Kapandji – Fisiologia articolare (1999) 1 Oliveira L. F. et al. – Effect of the shoulder position on the biceps brachii emg in different dumbbell curls (2009) 2 McMahon G et al. – Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated (2014) 3 Moon J. et al. – The Effect of Shoulder Flexion Angles on the Recruitment of Upper-extremity Muscles during Isometric Contraction (2013)
L’hip thrust è un’esercizio che interessa principalmente gli arti inferiori, tornato alla ribalta negli ultimi anni grazie ad alcuni coach e studiosi d’oltreoceano, come per esempio Bret Contreras.
Oltre alla meraipertrofia, l’hip thrust può trovare il suo spazio anche all’interno di una preparazione atletica finalizzata al miglioramento delle capacità condizionali. In questo (altro…)
I massaggi sono veramente utili per il recupero fisico? Scopriamolo insieme!
Concetti basilari
Se utilizzato nella maniera più opportuna, il massaggio può favorire recupero fisico e performance. Le tecniche manuali che si utilizzano nel massaggio sportivo sono lo (altro…)