Tag: frequenza cardiaca

  • Monitorare il recupero fisico (calcolo IR)

    Monitorare il recupero fisico (calcolo IR)

    Parlando di sport di performance e preparazione atletica ad essi dedicata, fra i vari parametri di monitorare, e con cui nerdeggiare, vi è anche l’IR, ossia l’indice di recupero.

    Avere un recupero, per quanto possibile, rapido e di qualità è indispensabile per essere fisicamente efficienti e “freschi” dopo aver eseguito uno sforzo fisico. In allenamento e ancor di più in gara.

    Introduzione: concetti chiave

    Dopo aver portato a conclusione uno sforzo fisico il corpo comincia a rigenerare i serbatoi energetici di ATP e CP (fosfocreatina), paga il debito di ossigeno e riossigena la mioglobina. Pertanto, è fondamentale che il sangue trasporti in tempi brevi l’ossigeno e le sostanze necessarie per colmare i debiti organici. All’aumento della velocità e capacità di trasporto del sangue migliorerà anche la capacità dell’organismo di riprendersi dopo uno stress fisico più o meno intenso.

    Il test (Rockport Walking test)

    La frequenza cardiaca (FC) è un ottimo indicatore dello stato di affaticamento dell’organismo, non a caso compare sia al numeratore che al denominatore della formula di calcolo dell’IR utilizzata per il Rockport Walking test (vedi sotto).

    Il test consiste nel camminare per un miglio (1609 metri) alla massima velocità possibile (tapis roulant o percorso pianeggiante).

    Spiegando quanto illustrato sopra, l’indice di recupero è uguale alla frequenza cardiaca massima rilevata durante la prova (meglio avere un cardiofrequenzimetro) meno la FC rilevata a 3 minuti dal termine della prova, fratto la FC max della prova (come prima) meno la FC a riposo (qualche ora prima o qualche ora dopo l’allenamento). Il tutto moltiplicato per 100.

    Legenda:
    Ir = indice di recupero
    FC max = frequenza cardiaca massima raggiunta sotto sforzo
    FC 3 min = frequenza cardiaca registrata a 3 minuti dalla fine dello sforzo
    FC rest = frequenza cardiaca a riposo

    Il test può essere eseguito una volta ogni 3-4 mesi in modo da confrontare i valori dell’IR nel tempo ed appuntarsi i miglioramenti.

    Secondo test (variante)

    Una variante del test, molto in voga fra gli atleti è quella di Ruffier. Quelli che seguono sono i quattro passaggi del test.

    1. Rilevazione del battito a riposo, in stato di rilassamento (a).

    2. Eseguire 30 air squat (accosciate a corpo libero) con un buon ritmo (trenta nell’arco di 45 secondi).

    3. Rilevare il battito cardiaco appena terminata la prova (b).

    4. Ci si sdraia per un minuto e poi si prende nuovamente la FC (c).

    Ora non resta che eseguire il calcolo: (a+b+c – 200): 10 = ?

    Ricapitolando: FC a riposo + FC post sforzo + FC 1′ dopo lo sforzo – 200, il tutto diviso per 10. Sotto la tabella dei risultati.

    RisultatiValutazione
    0-1Eccellente
    2Ottima
    3-4Buona
    5-6Discreta
    7-9Scarsa
    10 o piùPessima

    Come per il Rockport Walking di prima, anche il test di Ruffier può e deve essere ripetuto nel tempo, ogni tot di mesi, in modo da monitorare le variazioni della capacità dell’organismo di recuperare le energie al termine di uno sforzo fisico.

    Grazie per l’attenzione.


    Bibliografia

    Fabrizio Fagioli, Luca Bartoli – Allenarsi con il cardiofrequenzimetro (5a Edizione, 2002)

  • Battle rope training: effetti allenanti delle corde nautiche

    Battle rope training: effetti allenanti delle corde nautiche

    Negli ultimi anni, soprattutto per via del CrossFit, stanno spopolando questi allenamenti “funzionali” eseguiti con le corde nautiche. Una moda sciocca oppure qualcosa che può tornare utile a molti?

    Buona lettura!

    Introduzione

    Le “battle rope” altro non sono che corde utilizzate per eseguire più tipi di movimento. Il movimento classico, il più diffuso è quello delle alternating waves (letteralmente, onde alternate), seguito da quello delle doppie onde (double waves). Poi vi sono tutta una serie di varianti più o meno semplici da eseguire. Una delle più interessanti è la hip to hip toss, variante che si ispira alla proiezione tipica del judo e che consiste nell’eseguire in contemporanea uno spostamento degli arti superiori verso un lato, destra o sinistra, più una torsione del busto (con le gambe che accompagnano il movimento).

    Anche limitandosi solamente a questi tre esercizi è possibile coinvolgere ed allenare buona parte dei muscoli dell’upper body: flessori dell’avambraccio (coracobrachiale, bicipite brachiale e brachiale), petto, deltoidi, core, trapezi e molto altro ancora.

    Aspetti metabolici

    Uno studio pubblicato nel 20151 ha mostrato come allenamenti anche molto brevi con le corde possono essere ottimi per bruciare calorie. Entrando più nel dettaglio (vedere sotto)…

    Numero soggetti11
    Età media24 anni
    Altezza media172 cm
    Peso corporeo75,7 kg

    Con, in totale, 10 soli minuti di allenamento (15″ di double wave e 45″ di recupero x 10 reps) fra gli 11 atleti vi è stata una spesa energetica media di 111.6 kcal (calorie bruciate). Come riportato nel paper stesso: «Our results suggest that rope training can provide a high-intensity stimulus for strength and conditioning professionals who seek alternative or reduced impact-conditioning methods for athletes or clients». In sintesi, il “battle rope training” (BRT) è ottimo per lavorare ad alta intensità mantenendo un basso impatto sui distretti articolari (scarsa probabilità di infortunarsi).

    Un altro studio ancora di Ratamess NA e colleghi2 definisce l’allenamento con le corde come un significativo stimolo metabolico e cardiovascolare, molto impegnativo sotto l’aspetto del VO2 max, l’accumulo di lattato ematico, la ventilazione ed i picchi della frequenza cardiaca. Nello specifico, sulle 8 serie di allenamento con 30″ di lavoro e 1 o 2 minuti di recupero (30″-1′ On:Off ; 30″-2′ On:Off) il recupero più corto (1′), come prevedibile, si è rivelato essere molto più allenante. Infine, qualora ve ne fosse bisogno, è stato provato3 come in acuto le richieste metaboliche del battle rope training (VO2 max) siano piuttosto superiori a quelle dei classici esercizi coi pesi liberi (bodybuilding e fitness) o col peso del proprio corpo (per esempio i piegamenti sulle braccia).

    Attivazione muscolare

    Uno dei pochissimi studi che ha analizzato l’attività muscolare tramite elettromiografia (EMG) durante l’alternating waves ed il double waves ha messo in luce come il capo anteriore dei deltoidi (spalle), l’obliquo esterno (addome) e l’erettore spinale a livello lombare (muscolo sacrospinale) lavorino parecchio in entrambe le varianti.

    Nella foto sopra: A = Double waves; B = Alternating waves (fonte).

    Come unica differenza tangibile, l’obliquo è stato maggiormente coinvolto nelle alternating waves rispetto alle doppie, discorso opposto per il muscolo sacrospinale (più attivo nelle double waves)4.

    Uno articolo più recente5 ha evidenziato un marcato utilizzo del trapezio superiore (parte discendente) e del muscolo palmare lungo (vicino al polso). Un po’ meno importante il lavoro del grande gluteo (dipende da quanto sono piegati gli arti inferiori durante il BRT) e quello del retto addominale (grafici sotto).

    Trovate cerchiati in rosso il double waves e l’alternating waves.

    Potenza e resistenza

    Un programma di strength & conditioning di 8 settimane basato sul BRT (3 sedute a settimana), testato su dei giocatori di basket, ha incrementato in maniera significativa la potenza aerobica, più la potenza (chest pass speed) e la resistenza alla potenza (power endurance) della parte superiore del corpo. Inoltre, si sono visti miglioramenti sulla resistenza del core (core endurance) e la potenza degli arti inferiori su salti come il vertical jump6. Sono stati utilizzati cinque tipi di movimenti: alternating waves, double waves, hip to hip toss (tutti e tre citati ad inizio articolo), side to side waves e in-out waves. L’allenamento con corde nautiche si è rivelato essere mediamente superiore agli interval training fatti con gli scatti (sprint).

    Conclusioni

    Anche se non di rado il BRT viene usato a sproposito – la moda è la moda – non vi è alcun dubbio che, dati ed esperienza alla mano, questa metodica di allenamento possa portare grandi benefici sotto più fronti.

    Un interessante lavoro che si potrebbe fare con le corde è anche quello di work capacity. Come illustrato qui, dato che la parte superiore del corpo è maggiormente interessata dal BRT (si affatica di più) è possibile principiare l’allenamento con degli esercizi come l’alternating wave o hip to hip toss per poi passare a del lavoro tecnico riguardante principalmente l’utilizzo degli arti inferiori. Ad esempio i tiri “terzo tempo” nel basket, calci nelle arti marziali, sacco e footwork nella boxe e così via. Non resta che provare.

    Sopra un protocollo redatto dal pugile professionista e coach Dario Morello finalizzato al miglioramento della work capacity (endurance specifica).

    Grazie per l’attenzione.


    Bibliografia

    1 Fountaine CJ, Schmidt BJ – Metabolic cost of rope training. J Strength Cond Res. 2015 Apr;29(4):889-93.
    2 Ratamess NA, Smith CR, Beller NA, Kang J, Faigenbaum AD, Bush JA – Effects of Rest Interval Length on Acute Battling Rope Exercise Metabolism. J Strength Cond Res. 2015 Sep;29(9):2375-87.
    3 Ratamess NA, Rosenberg JG, Klei S, Dougherty BM, Kang J, Smith CR, Ross RE, Faigenbaum AD – Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises. J Strength Cond Res. 2015 Jan;29(1):47-57.
    4 Calatayud J, Martin F, Colado JC, Benítez JC, Jakobsen MD, Andersen LL – Muscle Activity During Unilateral vs. Bilateral Battle Rope Exercises. J Strength Cond Res. 2015 Oct;29(10):2854-9.
    5 Austin Salzgeber, John P. Porcari, Charlend Howard, Blaine E. Arney, Attila Kovacs, Cordial Gillette, Carl Foster – Muscle Activation during Several Battle Rope Exercises. (2019) Int J Res Ex Phys. 14(2):1-10.
    6 Chen WH, Yang WW, Lee YH, Wu HJ, Huang CF, Liu C – Acute Effects of Battle Rope Exercise on Performance, Blood Lactate Levels, Perceived Exertion, and Muscle Soreness in Collegiate Basketball Players. J Strength Cond Res. 2018 Jul 17.

  • Corsa e boxe: correre serve a un pugile?

    Corsa e boxe: correre serve a un pugile?

    “Io corro sulla strada, molto prima di danzare sotto le luci”, questa è solo una delle tanto celebri frasi di Muhammad Ali, che era solito percorrere diversi km di corsa la mattina presto per allenare il fisico, ma anche per temprare la sua anima. Abbiamo tutti negli occhi Rocky che corre inseguito da uno sciame di ragazzini, saltando panchine e sfrecciando sulla scalinata di Philadelphia.

    Introduzione

    A chiunque abbia praticato sport da combattimento sarà capitato di arrivare esausto o non arrivare proprio al termine di una seduta di sparring e sentirsi dire: ”Vai a correre, non hai abbastanza fiato!”.
    Se quindi per quella che possiamo considerare la “vecchia scuola”, la corsa, anche estensiva per lunghe distanze, era da considerarsi uno dei capisaldi della preparazione fisica di un pugile, nella nuova generazione si sta facendo largo l’idea opposta della totale inutilità di tale pratica e di come la parte di conditioning debba essere portata avanti con metodologie diverse.

    Domanda e risposta

    La domanda a cui l’articolo presente cerca di dare una risposta, basandosi sull’evidence based, ma in modo da restare comprensibile a tutti, è quindi la seguente: la corsa serve o meno ad un pugile?
    Per dare una risposta corretta ed esaustiva al quesito bisogna prima analizzare il modello prestativo dello sport a cui si fa riferimento e, di conseguenza, ai sistemi energetici che entrano in gioco. La durata dei round è di 3’ con 1’ di recupero fra essi, il loro numero totale può variare da un minimo di 3 nel dilettantismo ad un massimo di 12 nei match professionistici titolati. All’interno del round stesso si possono alternare fasi di studio (60% aerobico/anaerobico alternato) a fasi di scambio (40% anaerobico lattacido), mentre il minuto di recupero è in condizioni di aerobica.

    Sopra potete osservare il diverso intervento dei sistemi energetici durante la corsa continua su varie distanze (dagli 800 metri alla maratona).1

    Dunque per quanto riguarda la bioenergetica utilizzata “i sistemi energetici dominanti, utilizzati nella boxe, sono quello anaerobico alattacido, anaerobico lattacido e quello aerobico, e l’attività è classificata come misto alternato (aerobico-anaerobico), con prevalenza di fasi anaerobiche” (Bompa, 2001).

    Andiamo a vedere brevemente in cosa consistono i tre sistemi energetici sopracitati per fare chiarezza.

    • Il sistema anaerobico alattaccido è un sistema con una forte disponibilità di energia, ma limitata nel tempo, si esaurisce entro 6-8 secondi, durante i quali non vi è accumulo di acido lattico e non vi è richiesta di ossigeno.
    • Il sistema anaerobico lattacido si attiva dopo i 6-8 secondi, raggiunge il picco entro i 30-45 secondi e si esaurisce in 120 secondi, non necessita di ossigeno ma si verifica un accumulo di acido lattico proporzionale all’intensità dell’esercizio.
    • Il sistema aerobico, infine, entra in gioco per attività di lunga durata, ma bassa intensità, richiede la presenza di ossigeno e sfrutta le riserve muscolari ed epatiche di glicogeno come “carburante”.

    Da questa analisi parrebbe che un lavoro estensivo come la corsa, in cui il sistema energetico preponderante è quello aerobico, a dispetto di un modello prestativo in cui questo sistema energetico ha un ruolo marginale, farebbe pensare che la “nuova generazione” che considera inutile questa pratica possa aver ragione, ma andiamo ad analizzare cosa dice la scienza a riguardo.
    I benefici della corsa estensiva sono molteplici. Quelli che più ci interessano sono principalmente due: il miglioramento dell’efficienza del sistema cardiocircolatorio ed il miglioramento della capacità di ossidazione del sistema muscolare, questi, infatti, permetteranno all’atleta di migliorare la capacità di recupero, abbassare la frequenza cardiaca a riposo, migliorare la capacità e la velocità di smaltimento del lattato. Ne consegue dunque che correre costituisce il metodo migliore e più semplice per incrementare l’efficienza e l’efficacia del sistema aerobico e del suo relativo potenziale di produzione energetica.

    I sistemi energetici anaerobico lattacido e alattacido sono fondamentali, ma non saranno mai al top della loro efficienza, se di base non vi è un solido sistema energetico aerobico. Non si può migliorare
    il cardio, solo con i circuiti, perché sono un metodo ad alta intensità in cui si arriva velocemente a superare la soglia anaerobica con conseguente accumulo di lattato e lo sforzo richiesto è così elevato da non rendere possibile svolgere un lavoro continuativo di durata.
    Correre e perfezionare quindi sistema energetico aerobico, non farà solo essere più performanti a basse intensità, ma anche ad alte intensità, in quanto di riflesso diventerà più efficiente anche il sistema energetico anaerobico lattacido grazie all’innalzamento positivo della soglia anaerobica e la velocità e la capacità di smaltimento del lattato saranno incrementate.2
    In opposizione a questo parere, alcuni giovani preparatori vedono la corsa come “la mortificazione del sistema nervoso” e la ritengono poco utile o addirittura dannosa, “se ho X riprese da 3 minuti, perché devo correre per un’ora consecutiva?”.
    Gli adattamenti cardiaci eccentrici, ossia legati ad un alto volume di lavoro dovuto alla corsa estensiva, sono inversamente proporzionali ad adattamenti concentrici, ossia legati a lavori ad alta intensità, trasformando quindi i pugili in moderni Forrest Gump e fondisti mancati.3
    Da un punto di vista fisiologico muscolare si può notare quali sono gli effetti del lavoro aerobico come la corsa, durante questa pratica si ha un passaggio dalle fibre Fast Twich (FT) più rapide, ma più affaticabili, a fibre Slow Twitch (ST), che presentano una capacità ossidativa maggiore grazie a maggior numero e dimensione dei mitocondri rispetto alle FT. 4
    Di conseguenza questo ultimo elemento è in disaccordo con uno sport in cui potenza e velocità rappresentano qualità fondamentali. Risulta, così evidente che la classica corsa continua di 10-12 km può risultare controproducente durante la preparazione di un match.
    In ossequio all’idea aristotelica del “giusto mezzo”, si può dire che la corsa è utile, ma solo se utilizzata con metodi e modulazioni corrette e programmate. La corsa estensiva potrebbe essere utilizzata in periodi precisi della stagione agonistica, ad esempio all’inizio dell’anno sportivo, nel caso di uno stop per le vacanze, al ritorno da un infortunio o come mantenimento in fasi di scarico. Si parte quindi da metodi estensivi in cui l’obiettivo è il progressivo aumento del volume, mantenendo una frequenza cardiaca moderata (intorno al 60% della FC max) e si proseguirà spostando il focus sull’intensità che aumenterà gradualmente fino a lavori di soglia anaerobica, con una riduzione del volume.

    Conclusioni

    Nella speranza di essere stato abbastanza esaustivo nei contenuti e di facile comprensione nella forma, vi auguro una buona lettura ed una buona corsa programmata!

    I campioni non si costruiscono in palestra. Si costruiscono dall’interno, partendo da qualcosa che hanno nel profondo: un desiderio, un sogno, una visione.

    Muhammad Ali

    Grazie per l’attenzione.

    Articolo di Christian Nicolino
    Laureato in Scienze e Tecniche Avanzate dello Sport
    Preparatore Fisico UIPASC

    Bibliografia

    1 Prof.ssa Paola Trevisson – Tecnica e didattica dell’atletica leggera (Dispense SUISM, a.a. 2014/2015)
    2 Perché un fighter deve correre anche se non gli serve?; Alain Riccaldi; 14 marzo 2015, projectinvictus.com
    3 Corsa e sport da combattimento: quando proporla?; Fabio Zappitelli; 23 marzo 2019, corebosport.com
    4 I miti degli sport da combattimento; Lorenzo Mosca; 5 marzo 2017; manipulusmosca.com

  • Il nuoto per i fighter: qualche appunto

    Il nuoto per i fighter: qualche appunto

    Ogni tanto si legge di atleti, magari anche famosi, che alternano le proprie sessioni tecniche (boxe/mma/muay thai/lotta) ad allenamenti in piscina. La cosa può funzionare? Discutiamone brevemente.

    gsp
    Principio di Archimede e articolazioni

    Chiunque abbia un minimo di memoria riguardo ciò che ha studiato al liceo si ricorderà della legge (o principio) di Archimede. Secondo quest’ultima, un corpo immerso parzialmente o completamente in un fluido, in questo caso l’acqua, riceve una spinta dal basso verso l’alto di intensità uguale a quella del fluido spostato.

    Immergersi in acqua non fa valere le solite regole della forza di gravità terrestre, questo rende il nuoto meno stressante per le articolazioni umane, da qui l’interesse che molti praticanti di sport di combattimento nutrono nei confronti dell’acquaticità.

    Nuoto o movimento in acqua?

    Va specificato che “allenarsi in acqua” non significa necessariamente mettersi a nuotare e fare vasche su vasche.

    Moltissimi atleti si limitano semplicemente a fare movimento in acqua con balzi, shadow boxing o a spostare oggetti (bilancieri di plastica, maniglie di gomma).

    Occorre sottolineare che la maggior parte delle persone, sportive e non, generalmente non ha una buona tecnica natatoria. Eventuali lezioni di nuoto toglierebbero tempo ed energie, anche mentali, ad altri allenamenti più utili e specifici.

    In acqua la propriocezione e l’esterocezione sono assolutamente alterate rispetto a quel che poi succederà sul ring, tatami o gabbia. Per questo sarebbe meglio relegare questi stimoli allenanti alla preparazione generale (GPP).

    Qui sotto un allenamento di power endurance fatto svolgere a Marvin Vettori (atleta UFC).

    Conclusioni

    In un protocollo di strength & conditioning molte cose possono funzionare, il nuoto ed il movimento in acqua non fanno eccezione, a patto che sia monitorata la frequenza cardiaca (parametro di fondamentale importanza) e che, come detto poco fa, i lavori acquatici rientrino nella fase di preparazione atletica generale.

    Ulteriori approfondimenti qui e qui.

    Grazie per l’attenzione.


    Approfondimenti

    Articoli sulla preparazione atletica → qui

  • Morte improvvisa da sport: come, quando e perché

    Morte improvvisa da sport: come, quando e perché

    Si chiama morte improvvisa da sport, abbreviata con MIS ed esiste veramente. Ora, senza farci prendere dal becero sensazionalismo, vediamo in cosa consiste.

    soccer death
    Cos’è la MIS?

    La morte improvvisa da sport è una morte che avviene entro un’ora dall’inizio dei sintomi acuti, in coincidenza temporale con l’attività sportiva ed in assenza di cause esterne atte di per sé a provocarla.

    (altro…)
  • Omeostasi, feed-back negativo e feed-forward: i principi della fisiologia umana

    Omeostasi, feed-back negativo e feed-forward: i principi della fisiologia umana

    I principi su cui su basa la fisiologia umana, ovvero quella scienza che studia il funzionamento di un organismo vivente e della parti che lo compongono.

    Buona lettura!

    homeostasis

    Omeostasi

    L’omeostasi è quell’insieme di processi biochimici che atti a far mantene l’equilibrio ad un determinato ambiente. In altre parole l’omeostati è un equilibrio che il nostro organismo deve conservare al fine di  (altro…)

  • Allenamento parallelo di forza e resistenza: vantaggi e svantaggi

    Allenamento parallelo di forza e resistenza: vantaggi e svantaggi

    Allenare più capacità organico-muscolari sia un contesto competitivo che salutistico ha i suoi pro e contro, come ogni cosa del resto. In questo articolo vedremo cosa comporta abbinare gli allenamenti mirati all’incremento della forza massimale e quelli finalizzati al miglioramento della resistenza aerobica (endurance), dispensando un po’ di consigli pratici. (altro…)

  • La sindrome da sovrallenamento

    La sindrome da sovrallenamento

    Overtraining e sovrallenamento, parole che tutti si mettono in bocca, alle volte anche a sproposito. Ora, partendo dalla fisiologia umana, andremo a capire cos’è il sovrallenamento, quali i fattori scatenanti, i sintomi e come evitarlo. Buona lettura!

    Pic-1-1

    «I was almost relieved when i injured my hamstring and had to curtail my competitive season»

    Definizione e cenni di fisiologia sportiva

    L’overtraining, o sovrallenamento, è una complessa sindrome psico-fisica nella quale lo sforzo fisico diventa insostenibile per l’organismo, quest’ultimo infatti non riesce più a recuperare dalla fatica accumulata. Ne consegue un calo delle prestazioni atletiche. Alle volte, il sovrallenamento culmina col il rifiuto da parte dell’atleta di allenarsi.

    Overtraining

    Gli stressors che agiscono durante l’allenamento sportivo causano considerevoli alterazioni all’omeostasi e/o alle funzioni dell’organismo che da essi sono stimolate, determinando una serie di adattamenti fisiologici sia a riposo che sotto sforzo.

    Nelle persone comuni, che non vivono di sport, questa sindrome non è data unicamente dall’allenamento ma anche da altri fattori di stress quotidiano (famiglia, impegni lavorativi, eccetera).

    L’overtraining non va confuso con l’overreaching (o sovraffaticamento), il quale indica un calo delle prestazioni ma a breve termine, da due o tre giorni ad un paio di settimane [1,2]. In altri termini, potremmo dire che il sovraffaticamento non è altro che un sovrallenamento più lieve.

    Overtraining

    Come mostrato nel grafico a sinistra, stimoli allenanti eccessivi, già nell’arco di pochi giorni possono alterare il corretto quadro ormonale. Il testosterone ha un netto calo, lo stesso vale per tiroxina (un ormone tiroideo), al contrario il cortisolo (ormone dello stress) schizza alle stelle. L’antagonismo fra testosterone e cortisolo è detto T/E ratio.

    Un allenamento massimale che sfocia poi in uno stato di sovrallenamento, riduce la variabilità della frequenza cardiaca [3]. Ad esempio, se il signor Giancarlo durante uno sforzo fisico passa da 140 a 170 bpm (sbalzo di 30 battiti), in uno stato di sovrallenamento, durante il compimento del medesimo sforzo avrà uno “sbalzo” di bpm minore.

    Il sovrallenamento arriva ad intaccare persino il sistema immunitario: riduzione delle immunoglobuline salivari IgA, riduzione della funzionalità dei globuli bianchi, riduzione rapporto linfociti T CD4/CD8 (helper/suppresor) ed infezioni virali ricorrenti.

    Incidenza del sovrallenamento…

    – 70% degli atleti di resistenza ad alto livello nell’arco della loro
    carriera [4]

    – Più del 50% dei calciatori professionisti durante 5 mesi di stagione
    agonistica [5]

    – 33% di giocatori di basket durante 6 settimane di sedute di
    allenamento [6]

    A voler essere pignoli, il sovrallenamento è suddivisibile in due tipologie principali: sovrallenamento simpatico e sovrallenamento parasimpatico. Il primo è associato ad un eccesso di attività anaerobica (quindi intensa) e si “cura” con massaggi, bagni in acqua e recupero attivo (allenamenti leggeri, poco intensi). Invece, quello parasimpatico è attribuito a lavori aerobici molto voluminosi. Per tornare in un buono stato di salute, anche qui è consigliato fare bagni in acqua (possibilmente fredda) e recuperare attivamente con allenamenti poco intensi e poco voluminosi.

    Sintomi

    I sintomi (e segni) principali del sovrallenamento sono i seguenti:

    • Affaticamento persistente
    • Difficoltà a dormire
    • Dolori muscolari cronici
    • Apatia
    • Difficoltà a concentrarsi
    • Depressione
    • Aumento frequenza cardiaca a riposo
    • Aumento pressione arteriosa a riposo
    • Disturbi gastro-intestinali
    • Perdita di peso
    • Squilibri ormonali
    • Calo delle prestazioni
    • Segni di una disfunzione neuro-endocrina [1] con elementi di dominanza o di riduzione del sistema nervoso simpatico.
    Prevenzione e rimedi

    Un po’ di indicazioni per prevenire il sovrallenamento…

    • Monitorare parametri come la FC o la pressione a riposo
    • Individualizzare l’allenamento
    • “Giocare” bene con valori allenanti  (intensità, volume, densità, frequenza)
    • Evitare una eccessiva monotonia dell’allenamento
    • Controllare le altre fonti di stress
    • Periodo di scarico (attivo oppure passivo)*
    • Ripresa dell’allenamento moderata (intensità contenuta)
    • Tenere sotto controllo l’alimentazione, l’idratazione ed il sonno
    • Sostenere il sistema immunitario con la vitamina C, D ed i grassi Omega-3
    • Parlare molto con l’atleta, in modo da riceve i feedback sulle sue sensazioni e sul suo stato di salute psico-fisico
    • Nei casi peggiori può essere utile rivolgersi a delle figure esterne (medico, psicologo, nutrizionista) ed effettuare degli esami clinici specifici (ematocrito, emoglobina, azotemia, cortisolo, testosterone, CPK).

    *in Medicina dello sport, lo scarico attivo (minor volume e/o intensità di allenamento) è consigliato per l’overreaching e lo scarico passivo (periodo nel quale non ci si allena) per l’overtraining vero e proprio.

    Cattura
    Riassunto di un po’ tutto quella che è stato detto fino ad ora [7]
    Conclusioni

    Risulta chiaro che più che alle persone che si allenano per passione 2-3-4 volte a settimana, la popolazione maggiormente esposta al rischio overtraining sia quella degli sportivi professionisti. I professionisti possono arrivare ad allenarsi anche tre volte al giorno e proprio per questo motivo è di fondamentale importanza monitorare tutti i parametri precedentemente citati ed avere sempre un buon dialogo con gli atleti.

    Grazie per l’attenzione.


    oc
    Bibliografia

    Parodi G. – Medicina dello sport (Dispense Universitarie SUISM, a.a. 2016/2017)
    Weineck J. – Biologia dello sport (Calzetti Mariucci, 2013)
    Wilmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Ediz. Calzetti Mariucci, 2005)
    Olsen L. – Overtraining: A Molecular Perspective (2016)
    Armstrong L. E. et al. – The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology (2002)
    Budgett, R. – Fatigue and underperformance in athletes: the overtraining syndrome (1998)
    Budgett, R. – Overtraining syndrome (1990)
    James D. V. B. et al. – Heart rate variability: Effect of exercise intensity on postexercise response (2012)
    Kreher, J. B. et al. – Overtraining Syndrome: A Practical Guide (2012)
    Burnstein B. D. – Sympathetic vs Parasympathetic overtraining – Selecting the proper modality to maximize recovery (2017)
    1 Fry A. C. – Resistance exercise overtraining and overreaching. Neuroendocrine responses (1997)
    2 Kuipers H. et al. – Overtraining in elite athletes. Review and directions for the future (1988)
    3 Uusitalo A. L. et al. – Heart rate and blood pressure variability during heavy training and overtraining in the female athlete (2000)
    4 Morgan et al. – Psychological monitoring of overtraining and staleness (1987)
    5 Lehmann M. et al. – Training-Overtraining: Influence of a Defined Increase in Training Volume vs Training Intensity on Performance, Catecholamines and Some Metabolic Parameters in Experienced Middle- And Long-Distance Runners (1992)
    6 Verma S. K. et al. – Effect of four weeks of hard physical training on certain physiological and morphological parameters of basket-ball players (1978)
    7 Mackinnon L. et al. – Overtraining (1991)

  • Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!

    phpThumb_generated_thumbnailjpg

    Cos’è l’EPO?

    Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.

    Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.

    N.B:  benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).

    TYP-466793-3082397-globuli-rossi

    Come incrementare i livelli di EPO

    Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].

    Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.

    Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.

    Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.

    Capture11

    Risposte fisiologiche e adattamenti all’allenamento ad alta quota

    La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].

    Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].

    *Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.

    In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].

    Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2,  questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.

    altaquota_07

    La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.

    Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].

    Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.

    Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.

    Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.

    Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.

    “La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione.
    Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.

    Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.

    L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].

    Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.

    Capture

    Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.

    Sulla questione muscolare non si sa molto altro.

    Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).

    Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:

    • diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
    • aumento del nervosismo;
    • peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
    • calo delle capacità coordinative;
    • aumento dei disturbi del sonno.
    61875780
    Applicazioni pratiche

    Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?

    L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.

    Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che  dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.

    Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.

    Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.

    In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.

    Allenarsi in alto e gareggiare in basso

    Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.

    Allenarsi in basso e gareggiare in alto (live high and train low)

    Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.

    Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].

    Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).

    F2.large
    Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]

    Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.

    Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.

    Controindicazioni più e meno gravi dell’allenamento in altura
    • Scottature solari e oftalmia delle nevi;
    • irritazioni delle vie respiratorie;
    • mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
    • edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
    • edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
    • emorragia retinica (si verifica dai 6000 m in poi).
    Due parole sulla training mask (TM)

    4a7bfe9d-8041-4589-8d9f-f38cc6471bfeNegli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.

    Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.

    A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).

    An external file that holds a picture, illustration, etc.Object name is jssm-15-379-g002.jpg
    Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]

    “Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro:
    – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici.
    – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%).
    – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta.
    – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti).
    – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].

    Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).

    Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].

    Conclusioni

    Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.

    Grazie per l’attenzione.


    oc
    Bibliografia

    Willmore H. J., Costill L. D. –  Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005)
    Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017)
    Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016)
    1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991)
    2 Strømme A. B. – Training at altitude (1980)
    3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983)
    4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007)
    5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996)
    6 Schoene et al. – Limits of human lung function at high altitude (2001)
    7 E. R. Buskirk et al. –  Maximal performance at altitude and on return from altitude in conditioned runnerd (1967)
    8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate
    9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975)
    10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967)
    11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967)
    12 Schmitt et al. –  ??? (2008) fonte primaria errata sul libro di riferimento
    13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000)
    14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001)
    15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004)
    16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989)
    17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988)
    18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005)
    19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973)
    20 Chapman et al. – Individual variation in response to altitude training (1998)
    21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002)
    22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016)
    23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016)
    24 Ness J. – Is live high/train low the ultimate endurance training model?

  • Allenarsi in base alla frequenza cardiaca

    Allenarsi in base alla frequenza cardiaca

    La corsa è senza dubbio il tipo di attività fisica più praticato in assoluto. Da chi corre per sport, a chi lo fa semplicemente per passione e salute.

    runner-802912_1920

    In questo articolo vedremo come allenarci per diverse finalità, correndo in base alla nostra frequenza cardiaca (fc).

    Prima però è necessario fare un passettino indietro: cos’è la frequenza cardiaca? E i bpm? La frequenza cardiaca è il numero di battiti del cuore al minuto, questi ultimi, abbreviati con “bpm”, sono la sua unità di misura. Per lavorare bene, con una certa precisione, è consigliabile spendere una cinquantina di euro per acquistare un cardiofrequenzimentro, ci si può allenare ed ottenere buoni risultati anche senza di esso ma sarà più difficile, l’autoregolazione non è una cosa alla portata di tutti.

    Per allenarsi senza cardiofrequenzimetro bisognerà ricorrere alla scala di Borg (o scala RPE), tutti i dettagli qui. Nel caso si voglia invece ottenere un numero, indicativo, dei battiti cardiaci si può ricorrere alla misurazione manuale. Ecco il procedimento: mettere due dita alla base del collo, contare i battiti per 15″ esatti e poi moltiplicare il numero ottenuto per quattro.

    Per calcolare la nostra frequenza cardiaca (teorica) ci sono varie formule matematiche, quelle che seguono sono le due più accreditate:

    220 - età (anni)
    Oppure: 208 - 70% età
    es. Lorenzo, 20 anni, FC massima di 200 bpm
    

    Nelle persone sane la FC a riposo è compresa fra i 60 e i 100 bpm, negli sportivi di un certo livello può essere leggermente più bassa (40-50 bpm).

    Ora è giunto il momento di introdurre un altro concetto: VO2max. Il VO2max è un parametro biologico che esprime il volume massimo di ossigeno che un essere umano può consumare nell’unità di tempo per contrazione muscolare.

    E’ misurabile direttamente tramite cicloergometro o indirettamente con altri test fisici. L’allenamento può migliorarlo di circa il 25%. Nei soggetti allenati la soglia anaerobica (punto di passaggio della produzione di energia dal sistema aerobico – in via principale – a quello anaerobico lattacido) corrisponde, negli sportivi, all’85% circa del VO2max e al 60% nei soggetti sedentari.

    002 (2)
    Per ulteriori approfondimenti sui sistemi energetici clicca qui

    Una volta giunti in prossimità della soglia anaerobica (SA), il metabolismo energetico verrà shiftato maggiormente sugli zuccheri, aumenterà l’accumulo di acido lattico e la respirazione sarà più difficoltosa. Oltre il VO2max , in regime alattacido, gli sforzi potranno essere mantenuti per pochi secondi e non si accumulerà acido lattico durante il normale svolgimento di attività fisica.

    Durante l’allenamento, in base alla frequenza cardiaca (FC), possiamo stabilire con discreta precisione quale sistema energetico sia maggiormente attivo. Essa può variare in base all’anzianità di allenamento, sesso ed età di una persona. Ad esempio con una FC inferiore o uguale ai 160-170 bpm (battiti per minuto), il sistema principalmente coinvolto in un uomo giovane ed allenato sarà quello aerobico.

    Effetti allenanti in base alla FC massima
    • <60% = lo stimolo è molto debole, considerato poco allenante
    • 60-75% = capacità aerobica
    • 75-85% = potenza aerobica e soglia anaerobica
    • 85-92% = allenamento anaerobico e tolleranza lattacida

    Capture.JPG

    In passato era credenza comune pensare che un allenamento prolungato a bassa intensità fosse più indicato per il dimagrimento, tanto da chiamare il range compreso fra il 60 ed il 75% della frequenza cardiaca: “zona lipolitica”. Tuttavia si è visto che, benché un allenamento poco intenso attinga maggior energia dai grassi (figura sotto), ciò non significa che in cronico un’attività fisica ad intensità moderata (60-75% FC), abbia effetti dimagranti così superiori  rispetto ai protocolli di allenamento più intensi, questo a parità di dispendio calorico [1,2,3,4,5,6]. Se l’obiettivo è il dimagrimento, la dieta è sempre il fattore principale.

    Capture

    Riguardo invece alla correlazione fra la scala RPE e la FC max, per farla breve, la scala utilizza de valori numerici, da 6 a 20 ed i valori della FC massima sono a grandi linee i seguenti.

    • 6 = 20% FCmax
    • 7 = 30%
    • 8 = 40%
    • 9 = 50%
    • 10 = 55%
    • 11 = 60%
    • 12 = 65%
    • 13 = 70%
    • 14 = 75%
    • 15 = 80%
    • 16 = 85%
    • 17 = 90%
    • 18 = 95%
    • 19-20 = 100%

    Intensità dello sforzo percepito:

    • 6 = intensità nulla
    • 7-8 = sforzo estremamente leggero
    • 9 = sforzo leggero (una camminata lenta)
    • 10-11 = leggero (riscaldamento blando)
    • 12-13 = sforzo abbastanza impegnativo
    • 14-15 = un duro sforzo
    • 16-17 = sforzo molto duro
    • 18-19 = sforzo estremamente duro, intensità submassimale
    • 20 = sforzo massimale

    Alcune cifre sono state prese da “Principi di metodologia del fitness“.

    Prima di lasciarci, una curiosità. Un test di accuratezza che ha analizzato alcune tipologie di cardiofrequenzimetro, ha rivelato che rispetto all’ECG (elettrocardiogramma), i cardiofrequenzimetri più precisi sono quelli che si posizionano sul petto (precisione del 99,6%), molto meno fedeli sono invece quelli da polso (67-92%).

    Grazie per l’attenzione!

    Buon allenamento!


    oc
    Bibliografia

    Gollin M. – Metodologia della preparazione fisica (Elika, 2014)
    Fagioli F., Bartoli L. – Allenarsi con il cardiofrequenzimetro (Elika, 1998)
    Wikipedia – Scala di percezione dello sforzo (link)
    Andy Peloquin – Chest Strap Vs Wristband Heart Rate Monitors
    1 Schoenfeld B. J. et al – Does cardio after an overnight fast maximize fat loss? (2011)
    2 Ballor D. L. et al. – Exercise intensity does not affect the composition of diet- and exercise-induced body mass loss (1990)
    3 Grediagin A. et al. – Exercise intensity does not effect body composition change in untrained, moderately overfat women (1995)
    4 Mougios V et al. – Does the intensity of an exercise programme modulate body composition changes? (2006)
    5 Pansini L. – Bruciare grassi non significa dimagrire (parte 2): effetto dell’attività fisica (2017)
    6 Keating S. E. et al. – A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity (2017)