La genetica è ingiusta, anti-meritocratica, avvantaggia alcuni ed affossa altri. Spesso può capitare di sentire discorsi di questo tipo nelle palestre o sui social, ma cosa c’è di vero? Domanda retorica…

Qualche tempo fa è stato pubblicato un bell’articolo in inglese (Genetics and Elite Athletes), spero che prenderne in prestito alcuni punti possa giovare anche al pubblico non anglofono. Buona lettura!

Introduzione

Non siamo tutti uguali e per accorgersi di questo bastano due occhi ed un cervello, in realtà neanche due gemelli omozigoti lo sono. C’è chi è un po’ più alto,chi più basso,chi più predisposto alla crescita muscolare, allo sviluppo della velocità, a quello della resistenza… O ancora, chi apprende un compito motorio nella metà del tempo rispetto ad un soggetto meno predisposto, chi è più soggetto a infortuni, malattie, e chi più ne ha ne metta.

Capisci l’importanza della genetica quando un ragazzo che non ha mai fatto del movimento in vita sua mette piede in palestra e in un paio d’anni ottiene i tuoi medesimi risultati, peccato solo che tu ti alleni dal triplo – se non quadruplo – del suo tempo, cercando di fare le cose a modo, lui magari neanche sa eseguire bene gli esercizi.

Genetica e forza

In base a come un muscolo si inserziona su un osso, od un complesso articolare, molte cose possono cambiare. Una giusta inserzione può permettere a un soggetto di eseguire più velocemente un determinato movimento tramite un maggior sviluppo di forza [1,2].

Gli studi ortopedici hanno effettivamente dimostrato che cambiare il sito di attacco di un tendine in una posizione meno vantaggiosa dal punto di vista meccanico, può ridurre il range di movimento di un’articolazione e la coppia articolare in varie posizioni (quando i muscoli si contraggono o si allungano, creano forza muscolare, questa forza muscolare attira le ossa creando una coppia articolare) [3].

Il punto in cui il muscolo si “attacca” all’osso è determinato da questioni genetiche [4], non lo scegliamo noi, inutile piangersi addosso o incolpare i genitori. Allo stesso tempo, anche la forza generata da due muscoli di analoga dimensione e inserzione può essere differente, basti pensare alla diversa distribuzione di fibre muscolari [5]. Di esse, tipologie e caratteristiche, avevamo già abbondantemente parlato qui.

Sopra potete osservare i cambiamenti del livello di forza dei quadricipiti di 53 soggetti sedentari che hanno eseguito un 4×10 (80% 1RM) di leg extension per 9 settimane (tre allenamenti a settimana). Vi è stata un’ampia variabilità fra i risultati ottenuti dai praticanti: c’è chi è migliorato tantissimo (forza incrementata di quasi il 50%) e chi quasi non è progredito per nulla (uno addirittura è peggiorato). Da Robert M. Erskine et al., 2010 [28].

Genetica e sviluppo muscolare

L’ipertrofia può dipendere da una moltitudine di fattori. Ad esempio, a livello genetico, può essere fortemente influenzata dalla miostatina (un gene). Mutazioni geniche potrebbero portare certi soggetti fortunati ad accumulare più muscoli del normale [6]. Inoltre, è assai probabile che una carenza di miostatina giochi un ruolo importante nel reclutamento di cellule satellite. Quest’ultime sono sostanzialmente delle cellule staminali, stem cells, del muscolo. Quando le fibre muscolari subiscono dei danni, le stem cells vengono attivate per fornire assistenza nel processo di adattamento e ricostruzione muscolare [7]. Sempre le cellule satellite possono donare i loro nuclei alle cellule muscolari per consentirne la crescita [8].

In letteratura scientifica si è visto come il reclutamento di cellule satellite sia estremamente variabile da persona a persona [9,10]. E’ stato quindi ipotizzato che la capacità di attivazione delle stem cells sia un fattore genetico [11] che premia, parlando di ipertrofia, gli individui in grado di reclutare meglio queste particolari cellule [8]. Quindi se avete un amico che pur allenandosi un po’ alla carlona cresce molto bene a livello muscolare, è probabile che egli sia inconsciamente capace di reclutare naturalmente le cellule satellite a ritmi molto superiori al normale.

Sopra, stesso studio preso in esame poc’anzi [28], è mostrato l’incremento della sezione trasversale dei quadricipiti dopo le solite 9 settimane di leg extension (4×10 all’80% 1RM, 3xweek). La crescita muscolare media è stata del 5,7%; anche qui i soggetti più predisposti hanno visto aumentare i propri volumi muscolari di quasi il 20% e quelli meno fortunati hanno avuto dei lievi peggioramenti (-3% circa). Come sempre, vi è stata una grande variabilità individuale.

Genetica e velocità

I velocisti d’élite possiedono muscoli mediamente più dotati di fibre bianche rispetto a una popolazione di comuni sedentari [12,13]. Si è anche osservato che i pesisti olimpici, atleti notoriamente molto esplosivi, hanno percentuali molto alte di fibre bianche [14]. Pare quindi ovvio constatare che gli atleti ben messi in quanto a fibre bianche rapide (tipo II) abbiano un enorme vantaggio sugli sport di velocità e/o potenza rispetto agli sportivi meno “geneticamente fortunati”. La maggior velocità ed efficienza muscolare di un soggetto rispetto a un altro non data unicamente dalla forza contrazione, ma anche dalla fase di rilassamento. «Possiamo suddividere la contrazione e il rilassamento muscolare in tre fasi principali, ovvero la contrazione, il rilassamento ed infine la fase latente, fase che segue lo stimolo, ma nella quale non c’è risposta. Questo complesso sistema di reazioni chimiche determinerà lo scorrimento di un filamento sull’altro, e quindi la contrazione del sarcomero. A seguito della contrazione la troponina rilascia ioni Ca2+ che tornano nel reticolo sarcoplasmatico» [15]. Più velocemente si possono rilassare le fibre muscolari, più velocemente il muscolo si accorcerà, generando una maggiore potenza complessiva [16]. Questo processo è mediato da più enzimi all’interno del muscolo che sono necessari per la risintesi dell’ATP, il legame del calcio e altri complicati processi biochimici [16]. Il celebre allenatore sovietico Yuri Verkhoshansky sosteneva che i velocisti talentuosi di natura rispondessero all’allenamento principalmente migliorando i tassi di rilassamento più che la forza muscolare effettiva [16]. Ben lungi dall’avere delle certezze, ci sono effettivamente dei dati che avallano la tesi del Prof. Verkhoshansky [17]. Sfortunatamente, anche i tassi di rilassamento sembrano essere altamente ereditari poiché gli studi hanno dimostrato che né l’età, né il sesso hanno alcuna correlazione con essi [18].

Un altro fattore determinante della prestazione atletica può essere l’isteresi del tendine. L’isteresi del tendine si riferisce all’efficienza con cui un tendine assorbe e reindirizza la forza [19]. I tendini sono il tessuto connettivo tra muscolo e ossa, si allungano quando un muscolo si allunga e si contraggono quando un muscolo si accorcia. Pertanto, la capacità di un tendine di trasmettere efficacemente la forza dall’allungamento all’accorciamento può determinare la quantità di potenza complessiva che può essere trasferita all’osso e alla locomozione complessiva [19]. Come riportato in letteratura scientifica [20] i tendini durante un ciclo di accorciamento-stiramento e durante le contrazioni isometriche massimali possono allungarsi fino dal 6 fino al 14%, inoltre se il tendine è lungo, i fascicoli muscolari si allungano di meno. Un tendine che è più rigido, per questioni genetiche ma anche adattamento all’attività fisica, è più prestante (assicura maggior potenza e velocità nei movimenti) ma è più soggetto agli infortuni.

Genetica e resistenza

Direttamente correlato all’idea di isteresi tendinea è l’economia del gesto nella corsa su lunghe distanze effettuata da atleti esperti. È stato teorizzato nel corso degli anni che i maratoneti d’élite sono semplicemente più bravi a “dissipare il calore” rispetto agli altri corridori [21,22]. Un corridore inefficiente, può manifestare un maggiore accumulo di calore a causa, in parte, della scarsa isteresi del tendine che accelera il processo di affaticamento durante una corsa protratta nel tempo [19]. A livello biochimico, diversi enzimi all’interno del muscolo sono necessari per determinare il “tasso metabolico” di uno sforzo fisico. Il più grande degli atleti di endurance può essere tale perché semplicemente ha degli enzimi più attivi dei suoi avversari di gara [22]. Ci sono infatti degli studi che mostrano come alcuni corridori particolarmente performanti siano in grado di mantenere velocità elevate a un VO2 max (massimo consumo di ossigeno) inferiore ai valori di altri soggetti meno allenati (o meno portati) [23]. Un po’ come se due veicoli andassero alla stessa velocità per innumerevoli chilometri e uno consumasse il 10% di carburante in meno rispetto all’altro.

Sempre riguardo alla corsa, una miglior economicità del gesto (andatura efficiente) può essere dovuta alla preponderanza di fibre muscolari di tipo I, quindi lente e rosse. Queste fibre, come molti sanno, sono le più adatte per impegni fisici protratti nel tempo: accumulano meno sottoprodotti metabolici e si affaticano più lentamente. Inoltre, uno dei fattori limitanti dei lavori di resistenza è l’afflusso di ossigeno ai muscoli. Questo, entro un certo limite, può essere migliorato con l’allenamento ma esistono anche qui persone più inclini di altre ad essere resistenti grazie a una maggior capacità (innata) di rifornire i propri muscoli di ossigeno [24]. Anche la densità capillare può essere influenzata dalla genetica individuale [24,25]. I capillari sono il sito dello scambio di ossigeno tra il sistema vascolare e il muscolo. È qui che l’ossigeno viene fornito al muscolo e i prodotti metabolici di scarto vengono rimossi. Pertanto, è facile intuire che più capillari ha un atleta nel tessuto muscolare, più ossigeno può essere erogato e più rifiuti metabolici possono essere smaltiti o riconvertiti [25].

Genetica e infortuni

Come sottolineato da Collins M. et al. [26], gli sforzi eccessivi che portano a lesioni dei tessuti molli del sistema muscolo-scheletrico, derivanti da lavori usuranti o attività fisica, sono influenzate dalla genetica individuale. In special modo quelle al tendine d’Achille (caviglia), alla cuffia dei rotatori (spalla) ed ai legamenti crociati (ginocchia). Le varianti di sequenza all’interno dei geni che codificano le diverse proteine ​​di matrice extracellulare dei tendini e/o dei legamenti sono state associate a specifici infortuni di specifiche zone dei tessuti. Per esempio le varianti della sequenza del gene della Tenascina-C (TNC), COL5A1 ed Metalloproteinasi di matrice 3 (MMP3) sono state collegate alle tendinopatie del tendine d’Achille. Entrando un po’ più nel dettaglio, le varianti della sequenza del gene della Tenascina-C sono state associate sia alle tendinopatie che alle rotture del tendine d’Achille. mentre le varianti del COL5A1 e COL1A1, geni che forniscono le istruzioni genetiche per realizzare le componenti del collagene di tipo I e V, sono state correlate ad infortuni al legamento crociato posteriore.

Inoltre, una meta-analisi del 2015, quindi alto impatto statistico, ha raccolto i dati provenienti da studi pubblicati in letteratura scientifica fra il 1984 ed il 2014 (trent’anni precisi). I ricercatori – Longo U. G. et al. – hanno confermato tutto ciò che avevano dedotto Collins e Raeligh nel 2009, aggiungendo che, oltre alla genetica, contano ovviamente diversi altri fattori, in primis lo stile di vita [27].

Altre letture utili:

- L’abc della genetica
- Genetica e predisposizione agli infortuni
- Genetica - Muscoli e allenamento: quanto conta?
- Tendini: salute e performance
- Tessuto muscolare: componenti, forma, contrazione e ipertrofia
- La forza nello sport e in palestra: consigli ed errori da evitare
- Ormoni androgeni: fisiologia di base, benefici ed effetti collaterali
Una lotteria della natura?

Nella seconda metà dello scorso secolo ci fu un interessante confronto intellettuale, dovuto a una netta divergenza di opinioni, tra i filosofi d’oltreoceano John Rawls e Robert Nozick. Il primo era un grande sostenitore dell’equità in ogni aspetto della vita sociale, il secondo – ideologicamente più a destra – no. Quest’ultimo, ricorrendo all’esempio di una partita di basket, sosteneva che i tifosi dovessero essere liberi di pagare il prezzo del biglietto facendo arricchire, direttamente o indirettamente, un giocatore particolarmente bravo (spendere i propri soldi in quel modo è un loro diritto). Qualora quel giocatore attirasse milioni di appassionati, egli ben presto diventerebbe molto ricco.

Ovviamente Rawls era in totale disaccordo: un società giusta non dovrebbe permettere a un uomo, sportivo o meno, di accumulare troppi soldi, salvo che ciò non porti dei vantaggi ai più poveri. Stando sempre al pensiero di J. Rawls, un grande talento nello sport o un’intelligenza superiore alla media è solo frutto di una fortuna sfacciata. Noi potremmo dire: genetica favorevole. Per questo filosofo, notevoli doti fisiche o intellettive non sono altro che una vittoria alla “lotteria della natura“, qualcosa che con la meritocrazia non ha nulla a che vedere. Per il collega Nozick, era invece giusto che l’eccellenza fosse meglio retribuita (anche con cifre milionarie). A distanza di anni, quello dell’equità e dei guadagni è ancora un argomento che infiamma il dibattito pubblico, saltuariamente anche in campo sportivo.

Conclusioni

In un certo senso potremmo dire che non siamo noi a selezionare scientemente uno sport da fare, ma è lo sport a scegliere noi. La pratica e la dedizione, non solo riguardo l’attività fisica, possono far migliorare praticamente chiunque e mettere delle pezze a certe lacune. Certo è che, a parità di impegno, chi ha ricevuto i biglietti fortunati per la lotteria della natura sarà sempre un passo avanti agli altri, anche senza averlo voluto.

Buon allenamento.



L’articolo ti è piaciuto? Seguici su Facebook e Instagram!


Bibliografia

[1] Lieber, R. L., & Shoemaker, S. D. (1992). Muscle, joint, and tendon contributions to the torque profile of frog hip joint. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 263(3), R586-R590.

[2] Duda, G. N., Brand, D., Freitag, S., Lierse, W., & Schneider, E. (1996). Variability of femoral muscle attachments. Journal of Biomechanics, 29(9), 1185-1190.

[3] Yamamoto, N., Itoi, E., Tuoheti, Y., Seki, N., Abe, H., Minagawa, H., & Okada, K. (2007). Glenohumeral joint motion after medial shift of the attachment site of the supraspinatus tendon: a cadaveric study. Journal of Shoulder and Elbow Surgery, 16(3), 373-378.

[4] Thomis, M. A. I., Beunen, G. P., Leemputte, M. V., Maes, H. H., Blimkie, C. J., Claessens, A. L. & Vlietinck, R. F. (1998). Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiologica Scandinavica, 163(1), 59-71.

[5] Tesch, P. A., Wright, J. E., Vogel, J. A., Daniels, W. L., Sharp, D. S., & Sjödin, B. (1985). The influence of muscle metabolic characteristics on physical performance. European Journal of Applied Physiology and Occupational Physiology, 54(3), 237-243.

[6] Schuelke, M., Wagner, K. R., Stolz, L. E., Hübner, C., Riebel, T., Kömen, W., … & Lee, S. J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350(26), 2682-2688.

[7] Allen, D. L., Roy, R. R., & Edgerton, V. R. (1999). Myonuclear domains in muscle adaptation and disease. Muscle & Nerve, 22(10), 1350-1360.

[8] Petrella, J. K., Kim, J. S., Mayhew, D. L., Cross, J. M., & Bamman, M. M. (2008). Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. Journal of Applied Physiology, 104(6), 1736-1742.

[9] Petrella, J. K., Kim, J. S., Cross, J. M., Kosek, D. J., & Bamman, M. M. (2006). Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. American Journal of Physiology-Endocrinology and Metabolism, 291(5), E937-E946.

[10] Timmons, J. A. (2010). Variability in training-induced skeletal muscle adaptation. Journal of Applied Physiology, 110(3), 846-853.

[11] Bouchard, C., & Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine and Science in Sports and Exercise, 33(6 Suppl), S446-51.

[12] Costill, D. L., Daniels, J., Evans, W., Fink, W., Krahenbuhl, G., & Saltin, B. (1976) – Skeletal muscle enzymes and fiber composition in male and female track athletes. Journal of Applied Physiology, 40(2), 149-154.

[13] Thorstensson, A., Larsson, L., Tesch, P., & Karlsson, J. (1977) – Muscle strength and fiber composition in athletes and sedentary men. Medicine and Science in Sports, 9(1), 26-30.

[14] Nathan Serrano,Lauren M. Colenso-Semple,Kara K. Lazauskus,Jeremy W. Siu,James R. Bagley,Robert G. Lockie,Pablo B. Costa,Andrew J. Galpin – Extraordinary fast-twitch fiber abundance in elite weightlifters. PLoS One 2019 Mar 27;14(3):e0207975.

[15] Contrazione muscolare – Wikipedia.

[16] Verkhoshansky, Y. V. (1996). Quickness and velocity in sports movements. New Studies in Athletics, 11, 29-38.

[17] Komi, P. V., Rusko, H., Vos, J., & Vihko, V. (1977). Anaerobic performance capacity in athletes. Acta Physiologica Scandinavica, 100(1), 107-114.

[18] Lennmarken, C., Bergman, T., Larsson, J., & Larsson, L. E. (1985). Skeletal muscle function in man: force, relaxation rate, endurance and contraction time-dependence on sex and age. Clinical Physiology (Oxford, England), 5(3), 243-255.

[19] Finni, T., Peltonen, J., Stenroth, L., & Cronin, N. J. (2013). On the hysteresis in the human Achilles tendon. American Journal of Physiology-Heart and Circulatory Physiology, (114), 515-517.

[20] Thom J. M. et al. – Passive elongation of muscle fascicles in human muscles with short and long tendons. Physiol Rep. 2017 Dec;5(23):e13528.

[21] Coyle, E. F. (2007). Physiological regulation of marathon performance. Sports Medicine, 37(4-5), 306-311.

[22] Marino, F. E., Lambert, M. I., & Noakes, T. D. (2004) – Superior performance of African runners in warm humid but not in cool environmental conditions. Journal of Applied Physiology, 96(1), 124-130.

[23] Weston, A. R., Mbambo, Z., & Myburgh, K. H. (2000) – Running economy of African and Caucasian distance runners. Medicine and Science in Sports and Exercise, 32(6), 1130-1134.

[24] Bassett, D. R., & Howley, E. T. (2000) – Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70-84.

[25] Joyner, M. J., & Coyle, E. F. (2008) – Endurance exercise performance: the physiology of champions. The Journal of Physiology, 586(1), 35-44.

[26] Collins M. et al. – Genetic risk factors for musculoskeletal soft tissue injuries (2009)

[27] Longo U. G. et al. – Unravelling the genetic susceptibility to develop ligament and tendon injuries (2015)

[28] Robert M Erskine, David A Jones, Alun G. Williams, Claire E. Stewart, Hans Degens – Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur J Appl Physiol. 2010 Dec;110(6):1117-25.

Charlie Ottinger – Genetics and Elite Athletes (2018)

John Rawls – Una teoria della giustizia (1971)

Nigel Warburton – Breve storia della filosofia (2011)