Tag: fisiologia

  • Gomito: anatomia e biomeccanica di base

    Gomito: anatomia e biomeccanica di base

    Altro appuntamento con i nostri articoli inerenti le articolazioni umane. Quanto segue può interessare chiunque pratichi sport, o lavori, che coinvolgono molto gli arti superiori. Buona lettura!

    Cenni anatomici

    Il gomito è un’enartrosi, quindi una articolazione che gode di un’ottima mobilità, composta da innumerevoli ossa. La foto riportata qui sotto può dare una mano a farsi un’idea della sua complessità.

    Il gomito è composto dall’unione di tre differenti articolazioni: omero-ulnare, omero-radiale e radio-ulnare. Volendo sintetizzare il tutto:

    • omero-ulnare = estremità distale dell’omero + estremità prossimale dell’ulna;
    • omero-radiale = estremità distale dell’omero + estremità prossimale del radio;
    • radio-ulnare = estremità prossimale del radio + estremità prossimale dell’ulna.

    Sulla porzione medio-distale dell’omero (la parte centrale e “bassa” vicino al gomito) vi sono i punti di inserzione prossimale del muscolo brachiale e del capo mediale del tricipite brachiale. Al “fondo” dell’omero, medialmente, abbiamo la troclea e l’epicondilo mediale, e lateralmente un capitello omerale e l’epicondilo laterale (l’epicondilo mediale dell’omero è detto anche epitroclea). Dalla troclea si diramano poi due piccole sporgenze: il labbro mediale ed il labbro laterale (figura sotto).

    Il già citato epicondilo mediale – che sporge medialmente dalla troclea – fa da punto d’inserzione prossimale per il legamento collaterale ulnare del gomito e per molti dei muscoli pronatori dell’avambraccio e flessori del polso. L’epicondilo laterale invece, funge da punto d’inserzione prossimale per il legamento collaterale mediale del gomito e per la maggior parte dei muscoli supinatori dell’avambraccio ed estensori del polso.

    Sotto, un’illustrazione del gomito destro visto anteriormente (sinistra) e posteriormente (destra).

    Riguardo l’ulna, bisogna sapere che è dotata dell’oleocrano, ossia una estremità arrotondata che conferisce al gomito la sua visibile “punta”. Inoltre, la superficie ruvida posteriore dell’oleocrano accoglie l’inserzione del tricipite brachiale. Sempre lì in loco vi è la cresta del supinatore, la quale delinea il punto di inserzione del legamento collaterale radiale e del muscolo supinatore. Come non citare anche la tuberosi dell’ulna, la quale accoglie l’inserzione del muscolo brachiale (da non confondere con il bicipite brachiale).

    Visione anteriore del radio ed ulna (braccio destro)
    Visione posteriore del radio ed ulna (braccio destro)

    Passando infine al radio, questo rappresenta una parte relativamente piccola del gomito ma una grossa parte dell’articolazione del polso. L’estremità prossimale del radio, poco sotto la testa dello stesso – vicino al gomito -, presenta il collo del radio e la tuberosità radiale. In corrispondenza di quest’ultima, detta anche tuberosità bicipitale, si inserisce sull’osso il bicipite brachiale.

    Visione laterale dell’epifisi prossimale dell’ulna (braccio destro)

    Seppur in maniera diversa, sia l’articolazione omero-ulnare che omero-radiale stabilizzano e mettono in sicurezza l’articolazione del gomito. La prima dà stabilità attraverso lo stretto contatto tra la troclea e l’incisura trocleare, mentre la seconda stabilizza grazie al supporto della testa del radio contro il capitello omerale, insieme alle sue connessioni capsulo-legamentose.

    Cenni biomeccanici

    Il gomito ha funzione di pronazione-supinazione e di flesso-estensione, quest’ultima si ha interagendo con articolazioni minori come quella omero-ulnare e omero-radiale. Alcuni testi osservando il rapporto del gomito col braccio e l’avambraccio, definiscono il primo un compasso. Per farci un’idea della pronazione e supinazione basti pensare all’intra e all’extra-rotazione dell’avambraccio. Questo semplice movimento è molto caro agli sportivi che lo eseguono ogni volta in cui devono eseguire curl per i bicipiti o decidere quale presa utilizzare per le trazioni alla sbarra, lo stacco da terra, e così via. Potremmo tradurre il movimento come un: da in piedi e rilassato “giro” il palmo della mano verso avanti (supinazione) e poi, il contrario, verso dietro (pronazione).

    Il movimento di flessione del gomito consiste nell’avvicinamento dell’avambraccio al braccio propriamente detto (quest’ultimo è la porzione di arto compresa fra il gomito e la spalla). Ne è un lampante esempio il curl per bicipiti, esercizio dove il braccio si flette, quasi a fare arrivare la mano alla spalla. Allo stesso modo, potremmo parlare di estensione citando il push down ai cavi; nell’estensione del gomito l’avambraccio si allontana dal braccio. I muscoli che fanno da motori della flessione sono il brachiale anteriore, brachioradiale e bicipite brachiale. Riguardo all’estensione, sono invece il tricipite brachiale e l’anconeo.

    Sopra, la fisiologica flessione (avambraccio che va verso l’alto) ed estensione (avambraccio che va verso il basso) del gomito. Solitamente, quando questa articolazione è in salute, il range di movimento consentito parte da una leggera iperestensione (-5°) per arrivare fino a 145° di flessione. In rosa è evidenziato l’arco funzionale di movimento di 100 gradi totali (da 30° a 130°).

    Per ulteriori approfondimenti, vi rimandiamo ai libri consigliati a fondo pagina.

    Grazie per l’attenzione.

    Bibliografia

    A. I. Kapandji – Anatomia funzionale (Monduzzi, 2020)
    S. B. Brotzman e R. C. Manske – La riabilitazione in ortopedia (Edra Masson, 2014)
    Neumann A. D. – Chinesiologia del sistema muscolo scheletrico. Fondamenti per la riabilitazione (Piccin-Nuova Libraria, 2019)
    Evangelista P. – DCSS. Power mechanics for power lifters (Sandro Ciccarelli Editore, ediz. 2015)
    D. Carli, S. Di Giacomo, G. Porcellini – Preparazione atletica e riabilitazione. Fondamenti del movimento umano. Scienza e traumatologia dello sport, principi di trattamento riabilitativo (Edizioni Medico-Scientifiche, 2013)

  • Anca: anatomia e biomeccanica di base

    Anca: anatomia e biomeccanica di base

    L’anca è un’articolazione particolarmente grande e mobile che unisce parte del tronco agli arti inferiori.

    Sopra, una visione frontale dei principali muscoli dell’anca.

    Cenni anatomici

    Osservando una qualsiasi tavola anatomica, partendo dall’alto possiamo notare la presenza dell’ileopsoas, muscolo allungato e piuttosto spesso formato dal grande psoas e dal muscolo iliaco; questi si inseriscono poi sul femore (piccolo trocantere). Va segnalata anche l’esistenza del muscolo piccolo psoas, situato ancor più internamente, lungo e sottile ma non sempre presente nell’uomo (muscolo rudimentale).

    Si possono notare anche il legamento inguinale (che si trova appunto nella regione inguinale), il muscolo piriforme che unisce la parte interna dell’osso sacro al femore, e l’otturatore interno ed esterno. Riguardo questi ultimi, entrambi sono muscoli esterni dell’anca e hanno forma appiattita e triangolare.

    Scendendo un po’, ci si può accorgere della presenza dei seguenti muscoli: pettineo, sartorio, gracile e adduttori (breve, grande e lungo). Andando in ordine, il pettineo ha come scopo quello di addurre (avvicinare) le cosce tramite, ovviamente, la contrazione muscolare. Interviene anche nei movimenti di flessione ed extrarotazione (rotazione esterna). Successivamente abbiamo il sartorio, muscolo estremamente lungo che corre lungo tutta la coscia, permette la flessione di quest’ultima sulla gamba, extrarotazione e abduzione; utile nella camminata, interviene inoltre nell’intrarotazione della tibia. Proseguendo abbiamo il gracile, muscolo profondo e piatto che contribuisce nell’adduzione delle cosce.

    Riguardo invece agli adduttori veri e propri, questi sono tre: l’adduttore breve, quello lungo ed il grade.

    Il primo è di forma triangolare, posizionato fra il muscolo pettineo e l’adduttore lungo e consente, come intuibile, l’adduzione delle cosce e l’extrarotazione del femore. Il suo cugino, l’adduttore lungo, si trova fra l’adduttore breve e l’otturatore esterno (anch’esso è di forma appiattita). Funge da adduttore delle cosce e da intrarotatore. Infine, dulcis in fundo, abbiamo il muscolo grande adduttore. Quest’ultimo è collocato fra i gracile e l’adduttore breve, è l’adduttore più potente in assoluto; oltre alla classica adduzione e alla retroversione del bacino, permette l’intrarotazione e flessione (coi suoi fasci anteriori), e l’extrarotazione ed estensione (coi suoi fasci posteriori). Nella raffigurazione qui sotto potete osservare i principali muscoli dell’anca visibili posteriormente.

    Prima di passare alle nozioni biomeccaniche, sicuramente più interessanti per gli sportivi, cerchiamo di trattare in poche righe i muscoli della parte più posteriore dell’anca. I muscoli di questa porzione corporea che sono assolutamente da conoscere sono i seguenti: grande, piccolo e medio gluteo, bicipite femorale, muscolo semitendinoso e semimembranoso.

    Il grande gluteo, come da nome, è un muscolo parecchio voluminoso che unisce il bacino al femore. Esso estende la coscia e ne permette i movimenti sull’asse trasverso (vedere il paragrafo successivo sulla biomeccanica), contribuisce al mantenimento della stazione eretta, della camminata ed estende l’anca. Il piccolo gluteo, meno voluminoso e più profondo, abduce ed intraruota la coscia, estende l’anca e contribuisce anch’esso al mantenimento della stazione eretta. Concludendo il discorso glutei, abbiamo infine il medio gluteo, muscolo appiattito e triangolare che estende l’anca, contribuisce al mantenimento della stazione eretta e abduce la coscia. Quest’ultima può venire intraruotata (con i fasci muscolari anteriori) ed extraruotata (fasci posteriori).

    Per una corretta informazione va citato anche il muscolo gemello dell’anca (divisibile in una porzione inferiore ed una superiore), il quale ha il compito di extraruotare la coscia.

    Cenni biomeccanici

    L’anca gode di una buona mobilità a causa della sua funzione: orientare l’arto inferiore in tutte le direzioni dello spazio, possiede quindi tre assi e tre gradi di libertà:

    • Asse trasverso
    • Asse antero-posteriore
    • Asse verticale

    Asse trasverso = X-X1; asse antero-posteriore = Y-Y1; asse verticale = O-Z.

    Tenendo a mente la figura riportata sopra, si fa presente come sull’asse trasverso (X-X1) vengano effettuati movimenti di flesso-estensione (piano frontale), sull’asse antero-posteriore (Y-Y1) movimenti di abduzione-adduzione (piano sagittale) e su quello verticale, sovrapponibile al longitudinale, movimenti di rotazione interna ed esterna (intra ed extra-rotazione).

    Volendo fare un confronto con l’articolazione della spalla (entrambe enartrosi), quest’ultima è meno stabile ma più mobile; l’anca, pur godendo di una buona movibilità, non raggiunge gradi di flessione o abduzione eccessivi, ma in compenso è piuttosto stabile e un po’ meno soggetta a infortuni.

    Flessione ed estensione

    Con la flessione dell’anca la superficie anteriore della coscia si avvicina al busto, mentre con l’estensione l’arto inferiore viene portato posteriormente rispetto al piano frontale (illustrazione qui sotto).

    L’ampiezza della flessione, oltre che da particolarità anatomiche individuali, dipende dalla natura della flessione stessa (attiva o passiva) e dall’angolo del ginocchio. La flessione attiva ha ROM (range di movimento) ridotto rispetto a quella passiva e se il ginocchio è esteso la flessione consentita dall’apparato locomotore è minore, per effettuarla più ampia occorre che il ginocchio sia flesso (gamba raccolta con polpaccio e coscia vicini). L’estensione dell’anca – movimento della gamba “verso dietro” – è invece poco ampia, indipendentemente dal fatto che sia di tipo attivo (intervento dei muscoli) o passivo (arto inferiore “tirato” fisicamente). Questo limite fisiologico è dovuto principalmente alla tensione del legamento ileofemorale (fig. sotto).

    Ovviamente, entro un certo limite, i movimenti di flessione ed estensione delle anche possono migliorare di ampiezza grazie ad un allenamento costante e ben svolto. Per approfondire la questione vi invitiamo a prendere visione del sempre valido Stretching: teoria e pratica.

    Adduzione ed abduzione

    L’adduzione porta l’arto inferiore in dentro (anche “forzando” il movimento e sovrapponendo una gamba all’altra), l’abduzione lo porta invece in dentro, rompendo la simmetria corporea (illustrazione qui sotto).

    È possibile abdurre una sola anca ma arrivati a un certo grado di estensione verrà automatico abdurre anche l’altra (questo lo sa bene chi pratica ginnastica ritmica o kick boxing). Nella vita di tutti i giorni capita inoltre di abdurre gli arti inferiori in contemporanea, come? Incrociando le gambe. Ovviamente il medesimo risultato è ottenibile tramite altri movimenti volontari.

    Portare un’anca in adduzione ed una in abduzione (le prime due donne stilizzate sopra) è una condizione assolutamente fisiologica, come del resto può esserlo avere entrambe le anche abdotte, basti pensare alla spaccata frontale.

    Ulteriori approfondimenti nella bibliografia presente a fondo pagina.

    Grazie per l’attenzione.


    Bibliografia

    A. I. Kapandji – Anatomia funzionale (Monduzzi, 2020)

    S. B. Brotzman e R. C. Manske – La riabilitazione in ortopedia (Edra Masson, 2014)

  • Le asimmetrie nel tennis

    Le asimmetrie nel tennis

    Articolo dopo articolo, asimmetria dopo asimmetria, ora tocca parlare del tennis, sport molto particolare date le esigenze tecniche.

    Quanto segue è il sunto di una tesi compilativa elaborata dal sottoscritto ed esposta presso l’Università degli Studi di Torino (Unito) per la laurea triennale in Scienze Motorie e Sportive. Buona lettura.

    Ipertrofia e non solo

    In sport come il tennis solitamente gli atleti tendono a usare di più un arto superiore rispetto all’altro, palesando quindi una preferenza laterale. Non a caso questo sport viene associato a delle asimmetrie scapolari (e non solo)1,2.

    Uno studio di Calbet J. A. et al.3 ha osservato che nell’età prepuberale (11-13 anni) i giovani tennisti hanno una asimmetria fra l’arto dominante e quello non dominante più marcata (20%) rispetto ai tennisti professionisti uomini (deltoidi, tricipiti, flessori del braccio e flessori superficiali dell’avambraccio del lato dominante erano più ipertrofizzati del 11-15%). Anche altri successivi studi, metodologicamente più accurati, hanno confermato una “asimmetria ipertrofica” abbastanza importante (12-13%)2,4. Va sottolineato come il grosso dell’ipertrofia sul braccio forte venga ottenuta quando gli atleti iniziano ad allenarsi molto giovani, specialmente a livello dell’avambraccio3, forse per questioni ormonali, oppure per il differente rapporto fra il peso della racchetta ed il volume muscolare dell’avambraccio dei bambini («ratio weight of racket/forearm muscle volume in children»)5,6,7,8,9. Basandoci sul materiale attualmente presente in letteratura scientifica sappiamo che l’asimmetria fra i due arti superiori include anche la muscolatura dei deltoidi (asimmetria simile fra professionisti e fascia d’età prepuberale: 16 e 13%)4, discorso differente per i tricipiti ed i flessori del braccio (tipicamente coracobrachiale, bicipite brachiale e brachiale). Questi ultimi muscoli sono asimmetrici nei giocatori adulti e professionisti ma non nei giovani in fase prepuberale4, ma questa differenza potrebbe essere comunque spiegabile. È possibile che le differenze nei tricipiti e nei flessori del braccio tra giovanissimi tennisti e atleti professionisti derivino dalla maggiore richiesta di forza e potenza dei colpi nei professionisti, specialmente durante il servizio10,11.

    Sopra, il grado di asimmetria fra giovani tennisti (fase prepuberale) e coetanei sedentari che non praticano tennis (Sanchis-Moysi J. et al., 2012).

    Possibili infortuni

    Più studi dimostrano come durante i colpi del tennis (dritto, rovescio, servizio, colpo al volo) vi sia una attivazione asimmetrica dei muscoli della zona inferiore del tronco12,13. Asimmetrie muscolari dell’ileopsoas e del grande gluteo14 sono state associate al dolore lombare15, dolore cronico all’inguine16, borsite e tendinite all’ileopsoas, più dolori al gran trocantere17. Infine, uno studio condotto su 61 tennisti professionisti ha palesato una notevole incidenza di infortuni, lesioni muscolari, al retto addominale, nello specifico situate nel lato non dominante18.

    Grazie per l’attenzione.


    Bibliografia

    1 Cools A. M. et al. – Prevention of shoulder injuries in overhead athletes: a science-based approach – Braz J Phys Ther. 2015 Sep- Oct;19(5):331-9.
    2 Sanchis-Moysi J, Idoate F, Serrano-Sanchez JA, Dorado C, Calbet JA – Muscle hypertrophy in prepubescent tennis players: a segmentation MRI study – PLoS One. 2012;7(3):e33622.
    3 Calbet JA, Moysi JS, Dorado C, Rodríguez LP – Bone mineral content and density in professional tennis players. Calcif Tissue Int. 1998 Jun;62(6):491-6.
    4 Sanchís-Moysi J, Idoate F, Olmedillas H, Guadalupe-Grau A, Alayón S, Carreras A, Dorado C, Calbet JA – The upper extremity of the professional tennis player: muscle volumes, fiber-type distribution and muscle strength.
    Scand J Med Sci Sports. 2010 Jun;20(3):524-34.
    5 Morris M, Jobe FW, Perry J, Pink M, Healy BS – Electromyographic analysis of elbow function in tennis players. Am J Sports Med. 1989 Mar- Apr;17(2):241-7.
    6 Blackwell JR, Cole KJ – Wrist kinematics differ in expert and novice tennis players performing the backhand stroke: implications for tennis elbow. J Biomech. 1994 May;27(5):509-16.
    7 Knudson D, Blackwell J – Upper extremity angular kinematics of the one-handed backhand drive in tennis players with and without tennis elbow. Int J Sports Med. 1997 Feb;18(2):79- 82.
    8 Wei SH, Chiang JY, Shiang TY, Chang HY – Comparison of shock transmission and forearm electromyography between experienced and recreational tennis players during backhand strokes. Clin J Sport
    Med. 2006 Mar;16(2):129-35.
    9 Giangarra CE, Conroy B, Jobe FW, Pink M, Perry J – Electromyographic and cinematographic analysis of elbow function in tennis players using singleand double-handed backhand strokes. Am J Sports Med. 1993 May-
    Jun;21(3):394-9.
    10 Elliot B. C. – Biomechanics of tennis (1992)
    11 Sanchís-Moysi J. et al. – Large asymmetric hypertrophy of rectus abdominis muscle in professional tennis players. PLoS One. 2010 Dec 31;5(12):e15858.
    12 Chow JW, Park SA, Tillman MD – Lower trunk kinematics and muscle activity during different types of tennis serves. Sports Med Arthrosc Rehabil Ther Technol. 2009 Oct 13;1(1):24.
    13 Wang LH, Lin HT, Lo KC, Hsieh YC, Su FC – Comparison of segmental linear and angular momentum transfers in two-handed backhand stroke stances for different skill level tennis players. J Sci Med Sport. 2010
    Jul;13(4):452- 9.
    14 Sanchis-Moysi J, Idoate F, Izquierdo M, Calbet JA, Dorado C. – Iliopsoas and Gluteal Muscles Are Asymmetric in Tennis Players but Not in Soccer Players. PLoS One. 2011;6(7):e22858.
    15 Nelson-Wong E, Gregory DE, Winter DA, Callaghan JP – Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin Biomech (Bristol, Avon). 2008 Jun;23(5):545- 53.
    16 Holmich P. – Long-standing groin pain in sportspeople falls into three primary patterns, a ‘‘clinical entity’’ approach: a prospective study of 207 patients. Br J Sports Med. 2007 Apr;41(4):247-52.
    17 Williams BS, Cohen SP – Greater trochanteric pain syndrome: a review of anatomy, diagnosis and treatment. Anesth Analg. 2009 May;108(5):1662- 70.
    18 Balius R. et al. – Ultrasound assessment of asymmetric hypertrophy of the rectus abdominis muscle and prevalence of associated injury in professional tennis players. Skeletal Radiol. 2012 Dec;41(12):1575-81.

  • L’atleta senza sonno

    L’atleta senza sonno

    Chi dorme non piglia pesci, ma chi non dorme non fa canestro (?)

    Una storia, tante storie

    È il pomeriggio del 26 febbraio, si giocano tre partite in quattro notti e il centrale dei Miami Heat, Hassan Whiteside, è in gran forma. L’indomani la squadra di quest’ultimo affronterà i Golden State Warrior e il giorno dopo ancora – 28 febbraio – voleranno tutti insieme a Houston per affrontare i Rockets. Ora però egli sta pensando all’orario a cui finirà la partita con i Warrior (22:00), quando saliranno in aereo per un altro volo (23:30), quando atterreranno a Huston (02:00) e quando giungeranno finalmente nell’hotel. Arriveranno lì almeno le tre di notte. Almeno. In quella stessa giornata dovranno poi giocare contro i Rockets.

    «Il sonno conta, – dice Whiteside – conta molto. Potrebbe essere la differenza fra una giocata di carriera ed una terribile». Ma è dentro questa bugia che sta l’enigma della “NBA life”. Il sonno è una cosa tanto importante quanto sfuggevole. Come dice Whiteside: «È così difficile ottenere il sonno di cui hai bisogno». Il giocatore dei Miami Heat spera di guadagnare qualche ora di sonno durante il viaggio in aereo per Huston, che il letto dell’albergo sia ok e che la frequente assunzione di melatonina lo aiuti a chiudere gli occhi. Ma anche con i giusti accorgimenti, nell’attuale calendario NBA è possibile ottenere un sonno duraturo e di qualità? «No», dice Whiteside. «È impossibile, è impossibile».

    Non preoccuparti. Nessuno è mai morto d’insonnia.

    (The Machinist, 2004)

    La stanchezza è stata a lungo una costante nella vita dei giocatori dell’NBA. Parliamo di un campionato con squadre che giocano 82 partite in meno di 6 mesi, volando fino a 80.000 chilometri a stagione, abbastanza per girare due volte il globo. Durante la stagione 2018/2019 le squadre dell’NBA si sono spostate in aereo con una media di oltre 400 km al giorno, per 25 settimane di fila. Molti addetti ai lavori – giocatori, allenatori, preparatori – hanno fatto notare come gli sforzi fisici tipici dello sport, le interruzioni circadiane, i continui spostamenti fra zone con fusi orari differenti – non si sposino bene in un’ottica di salvaguardia della salute dell’atleta. I dati finora raccolti evidenziano come la privazione del sonno sia un flagello per l’NBA, un vaiolo che colpisce i corpi e le menti dei cestisti, lasciando segni profondi. Ci sono manager che lavorano per l’NBA e che, oltre a sottolineare il «grosso problema», dicono: «Abbiamo una grande popolazione di vampiri, servono delle soluzioni».

    La salute e il benessere dei giocatori continuano a essere un punto focale per l’NBA

    (Ufficio stampa NBA)

    Nonostante le promesse e gli sfori della lega, la privazione del sonno è ancora uno dei principali fattori legati allo stato di salute degli atleti.

    Ora, spostiamoci di qualche centinaio di chilometri.

    Dalla sua postazione nello spogliatoio dello Staples Center di Los Angeles, Tobias Harris si guarda intorno. Poco dopo, indicando i suoi compagni di squadra dice: «Chiedi a chiunque nella stanza, sto parlando del sonno. Penso che fra un paio d’anni si parlerà dei problemi legati al sonno come ora si parla delle commozioni cerebrali nell’NFL (football americano, ndr)».

    Alcuni compagni ci scherzano su: «Oh, c’è un momento in cui devi andare a letto». Ma Harris sa bene che: «Devo essere in forma ai massimi livelli per affrontare al meglio l’indomani».

    Dati

    Quanto riportato sopra è parte di un articolo di ESPN (tradotto, adattato e riassunto per l’occasione). Cogliendo la palla al balzo, in letteratura scientifica è stato appurato come un sonno lungo e regolare possa portare benefici alle prestazioni dei giocatori di basket (maggior precisione sui tiri a canestro, velocità, vigore e minor affaticamento) [1]. Un sonno incostante e breve (perennemente inferiore alle 8 ore) sul lungo periodo pare aumenti sensibilmente il rischio di infortunarsi [2]. Tra l’altro, anche le neuroscienze hanno fatto notare come la privazione di sonno porti le persone a desiderare più facilmente il junk food (cibo spazzatura) [3].

    Amigdala ipotalamo, fra le altre cose, si occupano del famigerato “sistema della ricompensa“. Basta dormire poco anche solamente una o due volte per far cadere il cervello in questo tranello della ricompensa. Insomma, una carenza di sonno porta queste due componenti ad essere stimolate ben più del normale qualora i nostri occhi si posino sui cibi che, in un’ottica edonistica, più ci soddisfano.

    L’amigdala in particolare, se sovrastimolata, porta a far prediligere alle persone cibi notoriamente molto calorici (ricchi di zuccheri e grassi).

    Conclusioni

    Le conclusioni, per una volta, è il caso di lasciarle fare a qualcun altro.

    Grazie per l’attenzione.


    Bibliografia

    Baxter Holmes – NBA exec: ‘It’s the dirty little secret that everybody knows about’ (2019)
    Migliaccio et al. – Finali notturne alle Olimpiadi: possibili influenze dei ritmi circadiani sulla perfomance? Studio pilota per Rio 2016. Da Strength & Conditioning Anno V, n.16 aprile-giugno (2016)
    Le Scienze – La carenza di sonno aumenta la voglia di Junk Food (2018)
    1 Cheri et al. – The Effects of Sleep Extension on the Athletic Performance of Collegiate Basketball Players (2011)
    2 Milewski M. D. et al. – Chronic lack of sleep is associated with increased sports injuries in adolescent athletes (2014)
    3 Rihm J. S. et al. – Sleep deprivation selectively up-regulates an amygdala-hypothalamic circuit involved in food reward (2018)

  • Bias cognitivi e fallacie logiche: fra scienza e quotidianità

    Bias cognitivi e fallacie logiche: fra scienza e quotidianità

    Vi siete mai chiesti quali sono i processi che stanno dietro alla selezione delle fonti quando dobbiamo informarci su un determinato argomento? Come mai noi tendiamo a propendere per un articolo piuttosto che un altro? In che modo possono influenzarci i pregiudizi?

    Se la risposta è negativa, questo è l’articolo che fa per voi!

    bias

    A differenza di quel che si potrebbe pensare in un primo momento, l’argomento di questo articolo è perfettamente attinente all’ambiente del benessere e dello sport, anzi, lo è a tutti gli aspetti dell’esistenza umana.

    Definizione

    I bias cognitivi sono costrutti basati su percezioni errate della realtà e/o pregiudizi che di frequente possono portare le persone a fare affermazioni e pensieri errati su i più svariati argomenti. Invece, le fallacie logiche (o sofismi) sono errori nascosti nel ragionamento che comportano la violazione delle regole di un confronto argomentativo corretto.

    E’ tutt’altro che raro – soprattutto su internet – quando i commenti sono espressi in maniera civile, vedere utenti consapevoli di essere di parte o pieni di pregiudizi circa un determinato tema, principiare una discussione con frasi del tipo: «Premetto che riguardo all’argomento x ho i miei bias, …».

    Quanti tipi di bias esistono?

    Esistono svariate decine di bias cognitivi. Qui di seguito ne elencheremo i principali:

    • bias di conferma: qualunque nuova informazione conferma le nostre convinzioni precedenti, confutando quelle opposte. Questo è in assoluto uno dei pregiudizi più comuni, è infatti fortemente legato alle posizioni religiose e politiche: «Nel valutare notizie e idee, la nostra mente è più attenta a riconoscersi in un gruppo di appartenenza, che rafforza la nostra identità, che non a valutare l’accuratezza delle informazioni» [1]. Inoltre, il bias di conferma va a nozze con le cosiddette bugie blu, restando in tema politico: «I bambini iniziano a dire bugie egoistiche verso i tre anni, quando scoprono che gli adulti non possono leggere i loro pensieri: non ho rubato quel giocattolo, papà ha detto che potevo, mi ha picchiato lui per primo. A circa sette anni iniziano a dire “bugie bianche” motivate da sentimenti di empatia e compassione: che bello il tuo disegno, i calzini sono un bel regalo di Natale, sei divertente.
      Le “bugie blu” appartengono a una categoria del tutto diversa: sono allo stesso tempo egoiste e vantaggiose per gli altri, ma solo se appartengono al proprio gruppo. Come spiega Kang Lee, psicologo all’Università di Toronto, queste bugie cadono a metà fra quelle “bianche” dette per altruismo e quelle “nere” di tipo egoista. “Si può dire una bugia blu contro un altro gruppo”, dice Lee, e questo rende chi la dice allo stesso tempo altruista ed egoista. “Per esempio, si può mentire su una scorrettezza commessa dalla squadra in cui giochi, che è una cosa antisociale, ma aiuta la tua squadra.”
      In uno studio del 2008 su bambini di 7, 9 e 11 anni – il primo del suo genere – Lee e colleghi hanno scoperto che i bambini diventano più propensi a raccontare e approvare le bugie blu via via che crescono. Per esempio, potendo mentire a un intervistatore sulle scorrettezze avvenuta durante la fase di selezione delle squadre in un torneo scolastico di scacchi, molti erano abbastanza disposti a farlo, e i ragazzi grandi più di quelli più giovani. I bambini che mentivano non avevano nulla da guadagnare personalmente; lo stavano facendo per la loro scuola. Questa ricerca suggerisce che le bugie nere isolano le persone, le bugie bianche le uniscono, e le bugie blu coalizzano alcune persone e ne allontanano altre. […] Questa ricerca – e queste storie – evidenziano una dura verità sulla nostra specie: siamo creature intensamente sociali, ma siamo inclini a dividerci in gruppi competitivi, in gran parte per il controllo della distribuzione delle risorse. […] “La gente perdona le bugie contro le nazioni nemiche, e dato che oggi in America molte persone vedono quelli dall’altra parte politica come nemici, possono ritenere – quando le riconoscono – che siano strumenti di guerra appropriati”, dice George Edwards, politologo alla Texas A & M e uno dei più importanti studiosi nazionali della presidenza» [2]. Per concludere, questo meccanismo psicologico è direttamente collegato al concetto della post-verità (posttruth), cioè alla non importanza della veridicità di una notizia. Vera o falsa che sia, l’unico fine di quest’ultima è quello di rafforzare i pregiudizi delle persone, è anche per questo motivo che il Debunking (sbufalamento) spesso e volentieri risulta essere inefficace [3]. Circa quest’ultimo punto, un dato teoricamente dovrebbe correggere una nostra errata convinzione, in realtà – paradossalmente – rischia di radicalizzare ulteriormente la stessa (backfire effect). Contestando un’affermazione vi è la possibilità che questa si pianti ancor più a fondo nel cervello (transparency of denial).
    • Bias di gruppo: bias che ci porta a sopravvalutare le capacità ed il valore del nostro gruppo di appartenenza, attribuendo perentoriamente alla sfortuna gli eventi negativi e al talento quelli positivi (basti pensare alle vittorie e sconfitte nello sport).
    • Bias d’autorità: detto ache principio d’autorità, porta le persone a credere per filo e per segno a tutto ciò che asserisce chi è in possesso di una laurea od un ottimo curriculum, anche se magari questo fantomatico esperto esce dalla sua sfera di competenze. Per la scienza i dati e gli studi contano più delle opinioni dei singoli individui, laureati o meno che siano. Ne aveva parlato bene il chimico e ricercatore Dario Bressanini nel suo articolo: Il potere mediatico del camice bianco.
    • Bias della negatività: tendenza a focalizzarsi principalmente sugli avvenimenti negativi, ignorando – almeno parzialmente – quelli positivi. Ciò può portare a sminuire se stessi e ad essere stressati.
    • Bias dell’ottimismo: l’optimis bias è molto più diffuso di quel che si potrebbe pensare e consiste nel vedere il proprio futuro in maniera molto più rosea di ciò che ci suggerirebbe la razionalità. Questo è una specie di trucco che mette in atto la nostra mente per ricercare serenità in periodi difficili.
    • Bias di ancoraggio: la prima informazione recepita diventa il capo saldo, l’ancora, del ragionamento successivo. Su di esso fanno leva tutte le persone che vogliono vendere qualcosa: si parte da un prezzo X e dopo si propongono prezzi un po’ più bassi che al confronto del prezzo iniziale (X) sembrano veramente convenienti.
    • Effetto carovana: rappresenta la tendenza a credere in qualcosa solo perché molte altre persone ci credono (i fedeli di Jim Jones ne sapevano qualcosa…).
    • Media bias: questo bias colpisce diversi giornalisti e fabbricatori di notizie. Riguarda la selezione delle notizie, delle storie ed il modo in cui esse vengono riportate.
    • Bias dello status quo: il cambiamento spaventa? Allora si tenta, anche inconsciamente, di prendere le decisioni più facili, quelle che lasciano le cose così come stanno.
    • Bias del presente: questo bias ci fa prendere delle decisioni che hanno il fine di gratificarci sul momento, in acuto, non valutando la bontà delle nostre scelte sul lungo periodo. Ciò si riflette soprattutto sui nostri acquisti e sul cibo che mangiamo (ruolo edonistico dell’alimentazione).
    • Bias d’azione: le persone sono portate ad agire anche quando intervenire porta a più svantaggi che altro.
    • Bias di omissione: al contrario di prima, le persone non agiscono anche se sarebbe logico farlo, probabilmente perché timorose di eseguire una azione (errata) e successivamente rimpiangerla. Venne osservato ciò durante le vaccinazioni che avevano lo scopo di contrastare un’epidemia (maggiori approfondimenti qui).
    • Bias di proiezione: percezione distolta della realtà. Riteniamo di pensare e vedere le cose sempre nella maniera giusta e ci sembra che anche le altre persone la pensino come noi (falso consenso).
    • Bias conservativo: ogni novità viene vista con grande sospetto e sottovalutata rispetto alle precedenti convinzioni.
    • Illusione della trasparenza: illusione di conoscere e percepire con estrema precisione lo stato mentale ed i pensieri di un’altra persona.
    • Effetto alone: la percezione di alcuni tratti è fortemente influenzata da altre caratteristiche dell’individuo che non hanno niente a che fare con i primi. Ne è un esempio il fatto che alcune persone tendano a considerare come intelligente un uomo solo perché elegante e di bell’aspetto.
    • Effetto alone inverso: il contrario di prima. Se un individuo od un oggetto ha una caratteristica negativa, allora anche gli altri tratti vengono percepiti come tali.
    • Ottimismo retrospettivo: visione distorta del passato, che ci porta a considerare e vedere in modo diverso (e migliore) gli avvenimenti che lo riguardano. Questo bias cognitivo è simile alla nostalgia, tuttavia quest’ultima non implica necessariamente una visione falsata. Ergo, si può essere nostalgici senza sopravvalutare a tutti i costi il passato. L’ottimismo retrospettivo è fortemente legato al declinismo, cioè quel bias che ci porta a pensare che tutto vada peggio rispetto ad una volta, anche quando oggettivamente non è così (Eh, ai miei tempi…).
    • Effetto novità: le nuove informazioni, specialmente se bizzarre e divertenti, vengono memorizzate meglio avendo una priorità nei meccanismo cognitivi della mente umana. Al contrario, le informazioni meno insolite – più “normali” – non vengono viste come prioritarie.
    • Bias dello scommettitore: errata percezione delle probabilità matematiche. Se alla tombola sono stati estratti di seguito quattro numeri pari, il quinto, seguendo questa (errata) logica, sarà molto probabilmente un numero dispari. Nulla di più sbagliato, le probabilità sono sempre 50 e 50.
    • Bias dell’angolo cieco: si manifesta nel momento in cui si ha la sensazione che le persone che ci stanno intorno vengano condizionate dai bias molto di più rispetto a noi.

    La cosa peggiore è che noi il più delle volte siamo corrotti da bias e prendiamo decisioni sbagliate senza nemmeno rendercene conto…

    Fallacie logiche
    • Argumentum ad hominem: durante una discussione vengono messe da parte le argomentazioni ed i contenuti per concentrarsi su degli attacchi alla persona.
    • Cherry Picking: il cherry picking è una tattica argomentativa, talvolta involontaria, che consiste nel rafforzare una tesi con l’ausilio di argomentazioni o prove ad essa favorevoli, escludendo a priori tutte quelle sfavorevoli, che pertanto la confuterebbero.
    • Argumentum ad ignorantiam: “l’assenza di evidenza non è essa stessa un’evidenza“, ma non lo sa chi cade, o ricorre, a questa fallacia logica. Se ad esempio non può essere provata la non esistenza di qualcosa (fantasmi, mostri vari, extraterrestri) ciò non sta a significare che quel qualcosa esista per forza.
    • Fallacia della brutta china: partendo da una determinata tesi si ipotizza  l’accadere di una sequenza di conseguenze (spesso gravi). Il più delle volte queste conseguenze vengono viste come pressoché inevitabili. Ad esempio, se si parte a bere una birra, di lì a poco si diventa alcolizzati. E se si prova uno spinello, sicuramente si passerà poi all’eroina.
    • Petitio principii: fallacia logica in cui si incappa quando la conclusione di un ragionamento conferma la premessa iniziale dello stesso. “Stephen King è un grande scrittore? Allora il suo ultimo romanzo è un gran bel libro!“.
    • Post hoc ergo propter hoc: tradotto letteralmente come “dopo di questo, quindi a causa di questo“, consiste nel ricondurre (con causalità) un avvenimento a ciò che è avvenuto subito prima. “Abbiamo pregato per ore ed il Signor Rossi si è risvegliato dal coma? Allora il Signor Rossi è stato salvato dalle nostre preghiere!” ma ovviamente un eventuale nesso temporale non sta necessariamente ad indicare un rapporto causa-effetto (anzi, spesso non è così).

    Altre considerazioni

    Non sempre è facile accorgersi degli errori insiti nelle proprie logiche argomentative e rivedere le proprie posizioni. Pensiamo ad esempio alla politica: quanto è piacevole discutere con persone del nostro medesimo orientamento politico – che quindi confermano le nostre posizioni di pensiero – e quanto è sgradevole, alle volte perfino irritante, farlo con chi ha idee molto diverse dalle nostre, magari diametralmente opposte o moralmente inaccettabili?

    Quando affrontiamo seriamente un dibattito, guardiamo un documentario, leggiamo un libro o ragioniamo su un film appena visto al cinema, il nostro cervello subisce delle modificazioni strutturali. Parliamo ovviamente di cambiamenti minimi, quasi impercettibili, visibili unicamente col microscopio elettronico a scansione. Tutto ciò è garantito dalla plasticità del nostro cervello.

    Al riguardo ci sentiamo di consigliarvi le seguenti letture:
    
    - Menti tribali. Perché le brave persone si dividono su politica e religione (J. Haidt)Cervello. Manuale dell'utente. Guida semplificata alla macchina più complessa del mondo (Magrini M.)
    - L'importanza dei romanzi per l'empatia e lo sviluppo sociale (Le Scienze)
    Bias e ricerca scientifica

    Nessuno è immune ai bias, ci mancherebbe altro. Ma la stessa ricerca scientifica è “livellata” per far sì che certi tipi di studi (i più attendibili) siano, per quanto possibile, esenti dai bias dei pazienti e degli stessi ricercatori.

    ebm-pyramid2

    Per esempio, i trial clinici (studi sperimentali) per contrastare pregiudizi e convinzioni personali di pazienti e ricercatori possono essere di 3-4 differenti tipologie:

    • Randomizzati: i soggetti sono stati inseriti in maniera del tutto casuale all’interno di uno dei gruppi di studio (gruppo che riceve il trattamento o gruppo placebo).
    • Cieco: i soggetti dell’esperimento non sanno quale trattamento ricevano.
    • Doppio cieco: nemmeno i ricercatori sanno qual è il trattamento somministrato a ciascuno dei soggetti dell’esperimento.
    • Triplo cieco: se oltre ai ricercatori e ai pazienti vi sono degli esaminatori esterni, anche questi non sono a conoscenza della natura della somministrazione del trattamento (placebo oppure no) a cui vanno incontro i pazienti.

    Senza questi “trucchi”, la ricerca scientifica non progredirebbe da secoli.

    Qui un video di Dario Bressanini molto interessante inerente la “Sindrome da Premio Nobel”, che riprende un po’ il discorso sul principio d’autorità di cui abbiamo trattato prima.

    Per ulteriori approfondimenti vi consigliamo le seguenti letture:
    - Invito alla ricerca. Metodologia e tecniche del lavoro scientifico (García J. M.)
    - Capire gli studi scientifici, mini-guida (E. Cravanzola)
    Conclusioni

    Bias, fallacie e modi di pensare, come già detto, il più delle volte sfuggono al nostro controllo ed alla nostra volontà. Difficilmente riconoscibili per i diretti interessati, è come se rientrassero nell’imponderabile. Sappiamo che ci sono e ci possiamo fare poco, indipendentemente di nostri sforzi.

    Dato che tutto ciò è connaturato alla mente umana, non vi è una soluzione, un antidoto, un vaccino. Pesare le proprie parole, mettersi in discussione, non sentirsi sempre e comunque superiori alle altre persone è forse un buon modo per limitare l’influenza dei bias nella quotidianità ma il raggiungimento di una sorta di immunità è impossibile. In fondo, anche la sensazione di essere inscalfibili dai bias è data da un pregiudizio bello e buono (bias dell’angolo cieco).

    Grazie per l’attenzione.



    Referenze

    Magrini M. – Cervello. Manuale dell’utente (2017)

    Bias ed euristiche: cosa sono e quali sono i più frequenti (link)

    Bressanini D. – Il potere mediatico del camice bianco (2016)

    Di Schiena R. et al. – Bias di omissione: Un contributo al dibattito attraverso la proposta di un test empirico (2007)

    Silverman C. – Lies, Damn Lies and Viral Content (2015)

    [1] Le Scienze – Perché crediamo al nostro partito politico (2018)

    [2] Le Scienze – Perché le “bugie blu” non fanno perdere consensi (2017)

    [3] Zollo F. et al. – Debunking in a world of tribes (2017)

  • Omeostasi, feed-back negativo e feed-forward: i principi della fisiologia umana

    Omeostasi, feed-back negativo e feed-forward: i principi della fisiologia umana

    I principi su cui su basa la fisiologia umana, ovvero quella scienza che studia il funzionamento di un organismo vivente e della parti che lo compongono.

    Buona lettura!

    homeostasis

    Omeostasi

    L’omeostasi è quell’insieme di processi biochimici che atti a far mantene l’equilibrio ad un determinato ambiente. In altre parole l’omeostati è un equilibrio che il nostro organismo deve conservare al fine di  (altro…)

  • Stretching: teoria e pratica

    Stretching: teoria e pratica

    Lo stretching, pratica tanto conosciuta quanto sottovalutata e trascurata dai più.

    Sporty Sport Stretchen Muscles Stretch Heat

    Prima di dedicarci a alle tecniche di stretching è però necessario dare alcune basiche definizioni, tre per la precisione.

    La prima riguarda la mobilità articolare, da alcuni autori considerata una capacità condizionale, che corrisponde alla capacità di una o più articolazioni di muoversi liberamente entro il proprio range di movimento fisiologico, senza dolori o problemi di alcun genere. La seconda definizione che occorre fornire è quella dell’estensibilità muscolare, ovvero la capacità che ha un muscolo di allungarsi, come prima, entro un limite fisiologico.

    Infine, abbiamo la flessibilità, cioè l’unione della mobilità articolare e dell’estensibilità muscolare.

    Flessibilità = mobilità articolare + estensibilità muscolare

    Inoltre, per chi non lo sapesse, c’è il range di movimento (ROM) è l’escursione permessa dalla flessibilità individuale. Che può essere più o meno ampia a seconda della persona ed anche per scelta di quest’ultima. Basti per esempio pensare all’utilizzo di “ROM incompleti” nel bodybuilding (mezze ripetizioni) per mantenere una tensione continua sul muscolo target.

    Cenni di fisiologia

    Lo stretching, insieme di tecniche volte ad incrementare la flessibilità corporea, si basa sul fenomeno neurofisiologico noto come riflesso miotatico, anche detto da stiramento. I recettori propriocettivi presenti nel muscolo, durante un qualsiasi allungamento inviano dei segnali al sistema nervoso centrale (SNC). I recettori sono i fusi neuromuscolari e gli organi tendinei del Golgi (OTG).

    Per farla semplice, durante i primi secondi di allungamento, i fusi neuromuscolari si oppongono allo stretching, inviando segnali al SNC che portano quest’ultimo ad ordinare ai muscoli in questione di contrarsi (riflesso miotatico) in modo da evitare eventuali danni e/o infortuni. Tuttavia, se lo stretching continua e lo stato di allungamento perdura, tramite l’azione degli OTG si verifica una sorta di riflesso miotatico inverso che porta il muscolo a rilassarsi ed allungarsi.

    È per questa ragione che nei canonici protocolli di stretching si consiglia di tenere certe posizioni per almeno 10-15 secondi, dato che tempi inferiori ostacolerebbero l’effetto del riflesso inverso citato poco fa, rendendo poco efficace l’allungamento. Va però specificato che se l’estensione muscolare è molto lenta difficilmente i fusi neuromuscolari si attivano.

    Recettori

    I fattori che influenzano la flessibilità che, ovviamente, è molto soggettiva e variabile, sono principalmente i seguenti:

    • Età
    • Sesso
    • Predisposizioni ossee di origine costituzionale
    • Eccessi di massa grassa
    • Eccessi di massa muscolare
    • Accorciamenti della muscolatura
    • Cicatrici e problemi della cute
    • Eventuali patologie o infortuni
    • Estensibilità dei tendini, dei legamenti, delle capsule articolari e della pelle
    • Temperatura ambientale e corporea*
    • Livello di attività fisica (se esposti ad escursioni articolari limitate, i tessuti connettivi tendono a diventare meno flessibili).

    *a causa della maggior temperatura corporea, i muscoli risultano essere più flessibili dopo il riscaldamento, pertanto generalmente si consiglia di effettuare lo stretching dopo il riscaldamento iniziale.

    Le variazioni della flessibilità dipendono principalmente da un paio di fattori, due adattamenti tissutali: elasticità e plasticità. La prima consiste nella capacità del muscolo di ritornare alla lunghezza di riposo dopo l’allungamento. La seconda invece, è la tendenza ad assumere e mantenere una nuova e maggiore lunghezza dopo un allungamento. Il muscolo ha proprietà elastiche, legamenti e tendini hanno proprietà sia elastiche che plastiche.

    In altre parole, se il fine è quello di incrementare la flessibilità, tramite svariate tecniche di stretching bisogna cercar di far sì che la plasticità prevalga sull’elasticità.

    Maggior flessibilità = plasticità > elasticità

    Un po’ come per crescere muscolarmente, in quest’ultimo caso occorre che l’anabolismo sia maggiore del catabolismo.

    I benefici dello stretching, a grandi linee, sono quelli che seguono: aumento della flessibilità, prevenzione infortuni (è giusto specificare che le evidenze non così solide), miglioramento della circolazione sanguigna, stimolazione della lubrificazione articolare, effetti rilassanti e miglioramento generale della performance (in cronico). Ovviamente possono esserci anche degli effetti negativi, di questi però ne parleremo più avanti, fra qualche riga.

    Tipologie di stretching

    Qui di seguito potete trovare le forme più note ed efficaci di stretching.

    Stretching statico (attivo e passivo): lo stretching statico attivo è il classico stretching che consiste nel raggiungere lentamente delle posizioni di allungamento e mantenerle per 15-30 secondi (il tutto in maniera autonoma). Invece, quello passivo viene effettuato grazie all’aiuto di un compagno di allenamento che tende a “forzare” l’allungamento, incrementandolo (fig. sotto).

    1
    Stretching statico passivo

    Stretching dinamico (attivo e balistico): stretching che, non essendo statico, fa uso di movimenti di molleggio, slanci e quant’altro. Quello attivo è molto controllato, il balistico no (quest’ultimo comprende slanci e balzi più rapidi e intensi).

    Forward_Leg_Hip_Swings1

    Essendo, almeno in linea teorica, piuttosto simili, alcuni autori non fanno distinzioni (Weineck J.) e considerano come stretching dinamico (o balistico) tutte le forme di allungamento che prevedono dei movimenti più o meno ampi.

    stretching
    I principali tipi di stretching (da Page P. – Current concepts in muscle stretching for exercise and rehabilitation, 2012, modificato)

    Stretching PNF: lo stretching PNF (Proprioceptive Neuromuscolar Facilitation), molto in voga negli ultimi anni, è un tipo di allungamento che punta ad incrementare la flessibilità tramite delle contrazioni isometriche (quindi che avvengono senza un effettivo accorciamento del muscolo).

    Weighted/Loaded stretching: in maniera poco tecnica potremmo nominare questa metodica come uno stretching zavorrato, che quindi si avvale di sovraccarichi per migliorare la flessibilità generale. Il “weighted stretching” è uno stretching relativamente giovane e che non ha alle spalle un’ampia letteratura scientifica, pertanto viene difficile approfondirlo e compararlo con gli allungamenti più tradizionali.

    Untitled collage
    Isometria in allungamento

    Christian Thibaudeau, coach di fama internazionale, sostiene che con lo stretching zavorrato sia possibile allungare i muscoli e, al contempo, massimizzare l’ipertrofia muscolare. Ma il sospetto più logico è che questo allungamento sia maggiormente utile per la crescita del fisico che per la flessibilità.

    Per ulteriori approfondimenti vi rimandiamo ad un suon articolo pubblicato su T Nation.

    Alcune considerazioni

    Una importante review sistematica del 2017 ha preso in esame ben 28 studi riguardanti lo stretching e nessuno di questi ha mostrato effetti negativi dello stretching sulla performance [1]. Anzi, uno di questi riguardava sedici pesisti, con un carico massimale (1RM) di panca piana medio di circa 130 kg ed ha messo in mostra un  lieve incremento dei carichi sul bilanciere [2]. Si è visto inoltre come su soggetti non allenati lo stretching possa aumentare in modo abbastanza significativo la forza muscolare [3].

    E’ di fondamentale importanza la tempistica con cui viene effettuato l’allungamento. Se non si vuole rischiare di vedere un peggioramento delle prestazioni, è buona cosa evitare di eccedere con lo stretching se questo viene svolto subito prima di una seduta di allenamento. Infatti, come si è visto in decine di studi raccolti in una nota review [4], lo stretching statico spesso e volentieri, in acuto, porta a peggioramenti nelle performance di forza e potenza. Risultati simili li ha dati un lavoro più recente condotto su giocatori professionisti di football [5].

    Mode a parte, uno studio ben condotto pubblicato sulla rivista scientifica Physical Therapy in Sport, non ha trovato metodologie come lo stretching PNF particolarmente superiori rispetto al canonico allungamento statico [6]. Riguardo a questa faccenda, la comunità scientifica non ha ancora una una posizione unanime, servono altri studi per sperare di avere delle certezze.

    Inoltre, lo stretching – in generale – non sembra essere in grado di influire significativamente sul recupero muscolare, al contrario di ciò che è credenza comune [7]. Ma questa è una questione assai intricata, di cui magari parleremo più nel dettaglio in futuro con altri articoli.

    «Una […] ricerca di Kay, A. D., and A. J. Blazevich del 2012, ha affermato che lo stretching statico per un totale di 45 sec può essere utilizzato come routine senza il rischio di una diminuzione significativa nella performance delle attività forza o di velocità. Per tempi di allungamento più lunghi(ad esempio, 60 s) ci sono maggiori probabilità di causare una piccola o moderata riduzione delle prestazioni» [8].

    Applicazioni pratiche – linee guida

    Bisogna dedicare allo stretching più sedute settimanali per fare sì che questo sia realmente allenante; durante l’allenamento della flessibilità dobbiamo percepire una certa tensione muscolare ma non del dolore, in quest’ultimo caso andiamo incontro a più rischi che benefici.

    Si consigliano almeno un paio di esercizi per ogni grande gruppo muscolare, con delle tenute (ripetute) di una certa durata. Per essere più precisi…

    • Frequenza: ≥3 volte a settimana
    • Ripetizioni: 3-5 per ogni posizione
    • Tempo: tenere ogni posizione per 15-45 secondi

    Quanto riportato sopra, valevole per lo stretching statico, può essere eseguito nelle classiche sedute di allenamento, oppure in sedute a parte.

    Lo stretching dinamico è invece indicato per essere eseguito prima che inizi l’allenamento vero e proprio, dopo un buon riscaldamento.

    Conclusioni

    Lo stretching, da alcuni sottovalutato da altri sopravvalutato, è indubbiamente un qualcosa che va fatto. Non esiste una ricetta unica, le tipologie sono diverse e lo stretching andrebbe prescritto da persona a persona, in base allo stato di salute, la condizione fisica, l’obiettivo, lo sport praticato, e così via.

    Nessun dubbio sul fatto che, se eseguito a caso, possa avere più svantaggi che benefici. Ma in quel caso la colpa è del singolo individuo o dell’allenatore incompetente, non dello stretching in sé.

    Grazie per l’attenzione.

    Buon allenamento!


    oc


    Bibliografia

    Weineck J. – Biologia dello sport (2013)

    Page P. – Current concepts in muscle stretching for exercise and rehabilitation (2012)

    De Angelis D. – Power-Flex Stretching (2007)

    R. D’Isep e M. Gollin – Fitness e muscolazione (2001)

    Ganzini A. – Flessibilità e mobilità articolare (Dispense FIPE)

    Segina M. – Gli effetti “reali” dello stretching (link)

    Pansini L. – Stretching: una retrospettiva dalla ricerca (Body Comp Academy, 2017)

    Leite T. B. et al. – Effects of Different Number of Sets of Resistance Training on Flexibility (2017)

    [1] Medeiros D. M. et al. – Influence of chronic stretching on muscle performance: Systematic review (2017)

    [2] Wilson G. J. et al. – Stretch shorten cycle performance enhancement through flexibility training (1992)

    [3] Nelson A. G. et al. – A 10-week stretching program increases strength in the contralateral muscle (2012)

    [4] Behm D. G. et al. – A review of the acute effects of static and dynamic stretching on performance (2011)

    [5] Kurt C. – Comparison of the acute effects of static and dynamic stretching exercises on flexibility, agility and anaerobic performance in professional football players (2016)

    [6] Azevedo D. C. et al. – Uninvolved versus target muscle contraction during contract: relax proprioceptive neuromuscular facilitation stretching (2011)

    [7] Herbert R. D. -et al. – Stretching to prevent or reduce muscle soreness after exercise (2007)

    [8] Ferrari M. – Stretching: cosa dicono le ricerche (IlCoach, 2015)

  • Cervello: istruzioni per l’uso

    Cervello: istruzioni per l’uso

    Il cervello umano è una macchina tanto affascinante quanto complessa. Da secoli infatti attira l’interesse di medici, scienziati, filosofi, psicologi e via discorrendo. Proprio a causa di questa sua complessità attualmente non conosciamo bene tutti i meccanismi che permettono a questa incredibile macchina di funzionare.

    Da Vinci
    Appunti e disegni di Leonardo Da Vinci
    Anatomia

    Il cervello, posizionato nella scatola cranica, ha un peso che si aggira intorno al chilogrammo e mezzo (1,5) ed ha un volume di circa 1100-1300 centimetri cubici (ovviamente con l’età questi numeri possono lentamente cambiare).

    Ogni atlante di anatomia che si rispetti cita prima di tutti l’encefalo, ovvero l’insieme del cervello, cervelletto e midollo allungato. A differenza di quello che credono alcuni, va infatti specificato che encefalo e cervello non sono la stessa cosa.

    Per il resto, la struttura anatomica del cervello dell’Homo Sapiens è la seguente:

    • Due macro-aree: telencefalo e diencefalo;
    • Sei lobi del telencefalo: lobo frontale, parietale, occipitale, temporale, limbico e dell’insulina;
    • Altri piccoli segmenti anatomici contenuti dal diencefalo: talamo, epitalamo, metatalamo, ipotalamo, subtalamo.

    3

    La sostanza grigia che tipicamente dà colore ai cervelli non vivi, altro non è che corteccia cerebrale, la parte rugosa ed più esterna del telencefalo, ricca di neuroni, cellule della glia e fibre nervose (senza mielina). Essa, da sola, rappresenta circa il 90% del peso complessivo del cervello. Com’è ben noto, questa corteccia è di fondamentale importanza perché ha a che fare con il linguaggio, le capacità di pensiero, la memoria, la coscienza e l’attenzione.

    image726

    Come mostrato nell’immagine riportata sopra, la struttura del cervello è incredibilmente articolata, non facile da spiegare. Per questo motivo adesso andremo a vedere alcune delle caratteristiche più interessanti di esso, senza tuttavia descrivere troppo nel dettaglio ogni singolo componente di questa maestosa macchina. Per ulteriori approfondimenti vi rimandiamo ai testi consigliati al fondo dell’articolo.

    Predizione

    Il nostro cervello, anche in situazioni di completa calma e tranquillità, è costantemente impegnato a cercare di predire il futuro. Non a caso Stephen Hawking definiva l’intelligenza come «la capacità del cervello di predire il futuro attraverso analogie con il passato». E proprio dalla predizione pare dipendano pensieri, emozioni, percezioni, ricordi e altro ancora.

    In pratica, è come se il cervello cercasse di intuire in anticipo cosa accadrà in un futuro più o meno prossimo in modo da farsi trovare pronto ad ogni imprevisto. Ciò è probabilmente legato a ragioni evolutive, alla sopravvivenza della specie umana. Quando noi camminiamo il cervello predice a ogni passo quando il piede raggiungerà il suolo. Privati di questo meccanismo di predizione, probabilmente non saremmo neanche in grado di camminare per pochi metri senza cadere, in special modo se la superficie a cui il nostro piede va in contro è irregolare.

    Memoria

    La memoria, come altre caratteristiche del cervello ha avuto una grande importanza durante il processo evolutivo dei Sapiens. Tramite essa infatti abbiamo tramandato linguaggi, usanze, racconti, tratti culturali e informazioni necessarie per sopravvivere. Nei millenni si è infatti distinta come meccanismo della paura (“Meglio non addentrarsi in quella foresta, ci sono dei pericoli“), come elemento sociale (gerarchie familiari, alberi genealogici), motorio e soggettivo (la personalità).

    Esistono principalmente due tipologie di memoria, quella a breve termine e quella a lungo termine. La prima dura poco, una manciata di secondi. L’altra rappresenta praticamente tutto quello che sappiamo: lingue, volti, nomi, luoghi, nozioni, ideologie, numeri, e così via.

    memento-memory

    I ricordi tendono ad imprimersi bene nella nostra memoria quando da parte nostra c’è una certa attenzione (parleremo meglio di ciò fra qualche paragrafo), meglio ancora se li associamo a qualche avvenimento.

    Ad esempio quanti bambini e ragazzini ricordano dell’interruzione di una puntata della Melevisione durante l’attentato dell’11 settembre 2001?

    Ma come funziona l’accesso ai ricordi? «Il fenomeno del recupero permette di andare a riprendere le informazioni immagazzinate nelle memorie permanenti. Il recupero è una modalità attiva e volontaria che talvolta richiede notevole sforzo. Il riconoscimento è il più delle volte un meccanismo passivo. Anche la semplice evocazione di una parola può attivare l’intero orizzonte a cui appartiene o facilitarne il riconoscimento e il recupero. Nel complesso le memorie permanenti funzionano per associazioni, che sono il meccanismo principale dei processi mnemonici» [1]. Le aree deputate al recupero dei ricordi sono quelle del lobo temporale, lobo occipitale e sistema limbico (insieme di strutture cerebrali collegate al lobo limbico).

    Terry Sejnowski, professore del Salk Institute in California, facendo un raffronto con la matematica binaria dei computer, stima che la memoria totale del nostro cervello sia indicativamente di un milione di gigabyte (1 Petabyte). Non è da escludere che la nostra memoria totale possa anche essere superiore, dato che tramite meccanismi associativi è possibile salvare una quantità esorbitante di dati.

    Acquisire ed elaborare nuove informazioni, nuove sensazioni, è tra l’altro un ottimo modo per contrastare l’invecchiamento neuronale.

    Plasticità

    La plasticità è la capacità (innata) del cervello di modificare la sua struttura nel tempo. Le esperienze sensoriali cambiano fisicamente questa struttura, ciò è possibile tramite l’azione dei neuroni, grazie agli assoni, ai dendriti ed alle spine di questi ultimi.

    motoneurone-diagramma-vettoriale-35181499
    In questa rappresentazione di neurone motorio possiamo osservare bene i dendriti e l’assone.

    Quando affrontiamo seriamente un dibattito, guardiamo un documentario, leggiamo un libro o ragioniamo su un film appena visto al cinema, il nostro cervello subisce delle modificazioni, che sono appunto modificazioni strutturali. Parliamo ovviamente di cambiamenti minimi, quasi impercettibili, visibili unicamente con sofisticati microscopi.

    Recenti studi suggeriscono che siano gli astrociti, particolari proteine della neuroglia, a garantire al cervello una buona plasticità (e non solo) [14,15].

    Questi mutamenti, per quanto lievi, ci accompagnano per tutto il corso della vita.

    Intelligenza

    Se volessimo parlare come si deve dell’intelligenza, cosa sicuramente non facile, potremmo definirla come l’insieme dell’apprendimento e comprensione, della consapevolezza di sé, della creatività e della capacità di adattarsi e cavarsela anche nelle situazioni più avverse e intricate.

    Howard Gardner, psicologo di fama mondiale, distingue ben 9 tipi di intelligenza: intelligenza linguistica, logico-matematica, spaziale, corporeo-cinestetica, musicale, interpersonale, intrapersonale, naturalistica ed esistenziale. Esse sono allenabili e se non utilizzate, col passare del tempo, anche nei soggetti più fortunati possono decadere.

    Il famigerato quoziente intellettivo (QI) non è un parametro attendibile per valutare l’intelletto di un soggetto, dato che si riferisce principalmente all’intelligenza logico-matematica, quindi teoricamente solo a 1/9 dell’intelligenza di un essere umano. A riprova di quanto affermato prima circa l’allenabilità della mente, l’attuale popolazione terrestre è mediamente più abile nelle questioni di natura logico-matematica rispetto a quella dell’inizio del ventesimo secolo, lo testimoniano i differenti valori del QI osservati di generazione in generazione (Alfred Binet sperimentò per primo il test nel 1904). Questo innalzamento del QI è detto effetto Flynn, dal nome del suo scopritore. Tuttavia, è bene specificare che riguardo a questo effetto ci sono alcune controversie [5].

    L’uomo, specialmente da bambino, va a inconsapevolmente a lavorare sulle proprie capacità intellettive. Lo fa per esempio quando sta in mezzo agli altri bambini all’asilo, alla scuola primaria, relazionandosi con gli adulti, giocando, studiando, maneggiando dispositivi tecnologici.

    Come alcuni già sapranno, l’intelligenza è anche una questione genetica. Ebbene sì, la natura spesso è ingiusta, infatti in base alla presenza o meno di alcuni determinati geni ci sono persone più portate ad essere intelligenti ed altre meno. La ricerca scientifica ha già individuato più di mille geni – per la precisione 1016 – coinvolti nello sviluppo dell’intelligenza [2]. Volendo volgarizzare il tutto, si è visto come con i “geni giusti” sia più facile avere una marcata intelligenza e un organismo in grado di contrastare efficacemente l’insorgere di patologie quali l’Alzheimer, il disturbo da deficit di attenzione e iperattività (ADHD). Di contro, sono 599 i geni identificati che stanno dietro alla stabilità emotiva e alcune varianti di questi geni espongono a una elevata propensione alla depressione e schizofrenia [3].

    Attualmente si stima che lo sviluppo delle capacità intellettive dipenda per il 53% da questioni legate alla genetica individuale [4].

    La notizia per qualcuno potrebbe essere una doccia fredda ma girarsi dall’altra parte non avrebbe senso. La natura umana è questa, non bisogna gioire o disperarsi ma solo accettare i fatti.

    Sensi

    Voi tutti conoscerete i sensi, no? I soliti cinque: vistagusto, tatto, udito e olfatto. Sapete anche che non è del tutto corretto limitarsi a citare solamente questi cinque?

    Esistono infatti anche altri sensi un po’ meno noti, il cui funzionamento è garantito da specifici organi che mandano segnali al cervello. Per esempio siamo dotati di propriocezione, ovvero la capacità di percepire e riconoscere i segmenti corporei nello spazio, la nocicezione (senso del dolore), la percezione delle sensazioni termiche (termocezione), eccetera.

    In quanto ad efficienza dei sensi l’uomo non primeggia in natura. Esistono infatti molti animali in grado di cogliere suoni a frequenze a noi impercettibili, o vedere cose che noi non riusciamo a visualizzare (luce ultravioletta). Se pensiamo agli affascinanti pipistrelli: «…oltre a emettere un’ampia gamma di segnali sonori per comunicare con i propri simili, essi utilizzano i suoni per orientarsi nello spazio e cacciare. Grazie alla ecolocalizzazione, una specie di sonar biologico, i pipistrelli lanciano segnali sonori a frequenze specifiche e ascoltano gli echi che questi producono rimbalzando sulle superfici circostanti per individuare gli oggetti e le prede» [6].

    biosonar
    Altre informazioni sul sistema di ecolocalizzazione le potete trovare qui

    Il sistema di “biosonar” utilizzato dai pipistrelli si può trovare anche in altri mammiferi come i delfini. Inoltre, alcune macchine costruite dall’uomo come i sottomarini ricorrono all’ecolocalizzazione.

    Emozioni e sentimenti

    L’essere umano è in grado di provare emozioni e sentimenti. Questi non sono così facilmente catalogabili, sono numerosi (molte decine) e sovrapponibili.

    Dietro alla capacità di provare amore, gelosia, felicità, paura, pietà, odio, tristezza, nostalgia, pessimismo, empatia, crudeltà, panico, simpatia, ecc. vi sono ragioni evolutive più o meno note.

    Volendo essere sintetici, fin dall’antichità l’amore è servito all’uomo per riprodursi e dar vita a famiglie numerose, garantendo la sopravvivenza della specie. Come spiegato nel bellissimo libro Sapiens, scritto dallo storico Yuval Noah Harari, vi sono delle prove abbastanza chiare che testimoniano l’empatia e la solidarietà verso i più deboli (soggetti disabili) provate dai Neanderthal oltre 100.000 anni fa. Questa specie umana estintasi da molto tempo (circa 40.000 anni), grazie all’importante e pesante cervello riusciva a provare forti sentimenti, tanto da legarsi e riprodursi con alcuni Homo Sapiens (teoria della fusione) [7,8,9].

    Ma se l’uomo è sopravvissuto tanto deve ringraziare anche un’emozione primaria di pericolo come la paura, tramite essa si è tenuto lontano da molti pericoli mortali. E con la simpatia, l’empatia, la felicità, è riuscito a convivere in famiglie, gruppi, villaggi e città via via sempre più grandi e organizzati.

    Ovviamente tutto ciò è assai più complesso di come riportato qui, per ogni emozione e/o sentimento ci sono un’infinità di reazioni chimiche che avvengono all’interno del nostro organismo, dall’ossitocina e la dopamina per l’amore, al testosterone e l’adrenalina per l’aggressività, e così via.

    Coscienza

    Come tutte le altre cose elencate in questo articolo, anche la coscienza non è facilmente definibile, ma va fatto comunque un tentativo.

    La coscienza è la percezione di sé, dei propri pensieri, delle proprie azioni e dell’ambiente circostante. Essa è attiva quando siamo svegli ed entra in una sorta di stand-by quando dormiamo. Risulta difficilissimo studiarla poiché non stiamo parlando di un elemento fisico da vivisezionare e mettere sotto la lente di un microscopio. Per questa ragione i progressi scientifici circa questo argomento sono piuttosto lenti.

    A differenza di quel che si credeva in passato, l’uomo non è l’unico mammifero dotato di coscienza. Si è infatti osservato che, a livelli diversi, anche altri mammiferi abbiano coscienza [10]. Ne sono un esempio i delfini, elefanti, scimpanzé e i gorilla. Com’è facilmente intuibile, è l’Homo Sapiens l’essere vivente che gode della più elevata coscienza, paradossalmente questo non implica necessariamente che le persone mettano sempre la giusta dose di coscienza nelle loro azioni.

    Attenzione e apprendimento

    Fin dalla nascita il cervello umano è programmato per concentrarsi e prestare attenzione ai più svariati stimoli, rispondendo ed imparando qualcosa da questi ultimi.

    attenzione

    Noi, quasi fossimo un computer od uno smartphone, siamo dotati di una specie di multitasking. Per chi non lo sapesse, in informatica il multitasking permette di eseguire più programmi contemporaneamente. Tuttavia, la versione umana di questa funzionalità è decisamente limitata, pertanto non è possibile riuscire a gestire con estrema efficienza più cose simultaneamente. Pinco Pallino può benissimo ascoltare musica e contemporaneamente leggere la Critica della ragion pura di Kant, ma nel caso volesse capire al meglio ciò che c’è scritto nel testo o concentrarsi per bene sulle liriche delle canzoni ascoltate, dovrà necessariamente fare una cosa o l’altra, non entrambe in contemporanea. A riprova di quanto appena detto, esiste un bug dell’attenzione, detto attentional blink, il quale porta ad un breve spegnimento dell’attenzione quando si passa da uno stimolo dell’interesse all’altro [11], questo spegnimento mediamente dura circa un secondo (1″). Come riportano i ricercatori Paola Sessa e Roberto Dell’Acqua [12], se abbiamo due stimoli visivi (T1 e T2) presentati in rapida successione, indagando sui limiti cognitivi insiti nell’uomo scopriamo che: «I risultati ottenuti […] suggeriscono con forza che uno o più stadi di elaborazione di T1 interferiscono con l’elaborazione di T2 se l’intervallo temporale tra T1 e T2 (stimulus onset asynchrony; SOA) è inferiore ai 500-600 ms. Questo fenomeno è stato denominato Attentional Blink (AB)».

    Quando noi decidiamo di prestare attenzione a qualcosa di specifico si parla di attenzione volontaria. Si parla invece di attenzione automatica quando ad esempio sentiamo un improvviso boato e ci voltiamo immediatamente in direzione del suono appena udito. Il sistema dell’attenzione è regolato dalla dopamina e talvolta, per questioni genetiche non ancora del tutto definite, questo sistema può essere difettoso. Stiamo infatti alludendo al già citato ADHD (disturbo da deficit di attenzione e iperattività). Esso si manifesta nei primi anni di vita e generalmente scompare con il raggiungimento dell’età adulta, ma in una stretta cerchia di casi può persistere anche nelle persone più grandi.

    Benché non sia ancora chiaro se c’è esiste una distinta sede anatomica che regola l’attenzione, è stata notata un’intensa attivazione della corteccia prefrontale (parte anteriore del lobo frontale del cervello) e del lobo temporale correlata, appunto, all’attenzione.

    Riguardo invece all’apprendimento, possiamo affermare senza alcun timore di smentita che nessun essere vivente è in grado di apprendere quanto l’Homo Sapiens. Da quando viene al mondo, fino al giorno della sua morte, egli continua ad analizzare informazioni, immagazzinando ed apprendendo nuove cose.

    Sembrerà un’assurdità ma il cervello impara meglio se è convinto di poter imparare meglio. Più un determinato argomento è complicato e più occorre impegnarsi portando il cervello fuori dalla sua comfort zone.

    Ripetere, ripetere e ripetere è il modo con cui si possono apprendere nuove nozioni. In questo processo sono coinvolte le sinapsi, i neuroni e le cellule gliali.

    L’apprendimento, anche motorio, ha delle fasce d’età in cui è facilitato (età prescolare, 3-6 anni) ma questa non è una buona scusa per gettare la spugna. Sia che si parli di apprendere una nuova lingua o iniziare a fare seriamente attività fisica.

    Dei neuroni speciali?

    Le capacità cognitive dell’uomo sono superiori a quelle degli altri mammiferi grazie alla sua corteccia cerebrale assai sviluppata, alla sua incredibile propensione alla socialità ed alla competitività che l’hanno distinto da tutto il resto fin da quando i sapiens fecero la loro comparsa sulla Terra, nella seconda metà del pleistocene.

    Una certa superiorità del nostro cervello potrebbe essere data da dei particolari neuroni non presenti negli altri mammiferi, i neuroni rosehip (foto sopra). Questi sono stati recentemente identificati da dei ricercatori Ungheresi e Americani nel primo dei sei strati della corteccia cerebrale, lo studio è stato pubblicato sulla rivista Nature [13].

    Tanto per fare un esempio, potrebbero essere proprio queste cellule cerebrali le responsabili della coscienza umana. Tuttavia, questa scoperta deve ancora essere confermata da studi più autorevoli, nulla è ancora certo.

    Approfondimenti

    Ecco alcuni articoli e libri consigliati per chi volesse approfondire questi argomenti:

    Atlante di neuroscienze di Netter (D. L. Felten e colleghi)
    - Cervello. Manuale dell'utente (Magrini M.)
    - Cervello e intelligenza motoria (Cravanzola E.)
    - Qualche breve lezione sul cervello (Vincent J. D.)Menti tribali. Perché le brave persone si dividono su politica e religione (J. Haidt)
    - Le basi genetiche dell'intelligenza e della stabilità emotiva (Le Scienze)

    Buona lettura.

    Grazie per l’attenzione!




    Bibliografia

    [1] Vincent J. D. – Qualche breve lezione sul cervello. Per capire l’oggetto più complicato che sia mai stato costruito (2016)

    [2] Savage J. E. et al. – Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence (2018)

    [3] Nagel M. et al. – Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways (2018)

    [4] Sniekers S. et al. – Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence (2017)

    [5] Trahan L. et al. – The Flynn Effect: A Meta-analysis (2014)

    [6] Artana S. – Quando i neuroni fanno “shhh”: come i pipistrelli selezionano i suoni che vogliono sentire (Focus, 2010)

    [7] Le Scienze – Più di 100.000 anni fa l’incrocio tra sapiens e Neanderthal (2016)

    [8] Gaianews.it – Scoperto primo ibrido tra Neanderthal e Homo Sapiens (2013)

    [9] Gaianews.it – Perché Homo sapiens è sopravvissuto agli altri ominidi (2018)

    [10] Kirkwood J. et al. – Consciousness, cognition and animal welfare (2001)

    [11] Raymond J. E. et al. – Temporary suppression of visual processing in an RSVP task: an attentional blink? (1992)

    [12] Sessa P. et al. – Il fenomeno “Attentional Blink” (2008)

    [13] Boldog E. et al. – Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type (2018)

    [14] Elena Blanco-Suarez et al. – Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors (2018)

    [15] Le Scienze – Un cervello plastico grazie agli astrociti (2018)

    Magrini M. – Cervello. Manuale dell’utente. Guida semplificata alla macchina più complessa del mondo (2017)

    Rossi A. F. et al. – The prefrontal cortex and the executive control of attention (2009)

    James Flynn – Why our IQ levels are higher than our grandparents’ (TED, 2013)

    Le Scienze – Le basi genetiche dell’intelligenza e della stabilità emotiva (2018)

    Le Scienze – Geni e intelligenza: un rapporto sempre più complesso (2017)

    Ulisse – Alla scoperta della mente (Rai.TV, 2011)

    Le Scienze – Il dialogo adulto-bambino e lo sviluppo cerebrale (2018)

    Worley W. – Disabled Neanderthal survived into old age because he was looked after (The Times, 2017)

    M. Brice – Ancient Bones Show That Caring for the Disabled Is as Old as Society Itself (Medical Daily, 2012)

    De Giuli M. – Emozione, ragione e sentimento (Il Tascabile, 2018)

  • Ormomi tiroidei e metabolismo

    Ormomi tiroidei e metabolismo

    In dei precedenti articoli abbiamo approfondito aspetti di endocrinologia generale della tiroide, ora andremo ad approfondire il suo ruolo nel metabolismo umano. Buona lettura!

    tiroide

    Come già spiegato qui, la tiroide è (altro…)

  • Muscoli adduttori: anatomia e rinforzo  per la prevenzione infortuni

    Muscoli adduttori: anatomia e rinforzo per la prevenzione infortuni

    Alcuni muscoli del corpo umano se particolarmente deboli, possono aumentare il rischio di incappare in problematiche muscolo-scheletriche. In questa categoria rientrano i muscoli adduttori. Buona lettura!

    Cenni di anatomia

    Gli adduttori sono i muscoli, detto banalmente, dell’interno coscia. Si dividono in adduttore breve, adduttore lungo, grande adduttore, muscolo pettineo e gracile.

    add

    Origine → inserzione → azione (altro…)