Gli assi ed i piani di movimento rappresentano le basi teoriche del movimento umano. Argomenti relativamente semplici che vanno tenuti a mente, soprattutto se si vuole parlare di argomenti nerd come la biomeccanica.
Assi di movimento
Piani di movimento
Piano frontale (o coronale): asse longitudinale e trasversale (anteriore – posteriore).
Piano sagittale: asse sagittale e longitudinale (destra e sinistra).
Piano trasverso (o orizzontale): asse sagittale e trasversale (superiore – inferiore).
Queste nozioni, anche se un po’ noiose da tenere a mente, sono l’abc del movimento umano. Utili specialmente nella descrizione degli esercizi a corpo libero ed anche con i sovraccarichi.
Overtraining e sovrallenamento, parole che tutti si mettono in bocca, alle volte anche a sproposito. Ora, partendo dalla fisiologia umana, andremo a capire cos’è il sovrallenamento, quali i fattori scatenanti, i sintomi e come evitarlo. Buona lettura!
«I was almost relieved when i injured my hamstring and had to curtail my competitive season»
Definizione e cenni di fisiologia sportiva
L’overtraining, o sovrallenamento, è una complessa sindrome psico-fisica nella quale lo sforzo fisico diventa insostenibile per l’organismo, quest’ultimo infatti non riesce più a recuperare dalla fatica accumulata. Ne consegue un calo delle prestazioni atletiche. Alle volte, il sovrallenamento culmina col il rifiuto da parte dell’atleta di allenarsi.
Gli stressors che agiscono durante l’allenamento sportivo causano considerevoli alterazioni all’omeostasi e/o alle funzioni dell’organismo che da essi sono stimolate, determinando una serie di adattamenti fisiologici sia a riposo che sotto sforzo.
Nelle persone comuni, che non vivono di sport, questa sindrome non è data unicamente dall’allenamento ma anche da altri fattori di stress quotidiano (famiglia, impegni lavorativi, eccetera).
L’overtraining non va confuso con l’overreaching (o sovraffaticamento), il quale indica un calo delle prestazioni ma a breve termine, da due o tre giorni ad un paio di settimane [1,2]. In altri termini, potremmo dire che il sovraffaticamento non è altro che un sovrallenamento più lieve.
Come mostrato nel grafico a sinistra, stimoli allenanti eccessivi, già nell’arco di pochi giorni possono alterare il corretto quadro ormonale. Il testosterone ha un netto calo, lo stesso vale per tiroxina (un ormone tiroideo), al contrario il cortisolo (ormone dello stress) schizza alle stelle. L’antagonismo fra testosterone e cortisolo è detto T/E ratio.
Un allenamento massimale che sfocia poi in uno stato di sovrallenamento, riduce la variabilità della frequenza cardiaca [3]. Ad esempio, se il signor Giancarlo durante uno sforzo fisico passa da 140 a 170 bpm (sbalzo di 30 battiti), in uno stato di sovrallenamento, durante il compimento del medesimo sforzo avrà uno “sbalzo” di bpm minore.
Il sovrallenamento arriva ad intaccare persino il sistema immunitario: riduzione delle immunoglobuline salivari IgA, riduzione della funzionalità dei globuli bianchi, riduzione rapporto linfociti T CD4/CD8 (helper/suppresor) ed infezioni virali ricorrenti.
Incidenza del sovrallenamento…
– 70% degli atleti di resistenza ad alto livello nell’arco della loro carriera [4]
– Più del 50% dei calciatori professionisti durante 5 mesi di stagione agonistica [5]
– 33% di giocatori di basket durante 6 settimane di sedute di allenamento [6]
A voler essere pignoli, il sovrallenamento è suddivisibile in due tipologie principali: sovrallenamento simpatico e sovrallenamento parasimpatico. Il primo è associato ad un eccesso di attività anaerobica (quindi intensa) e si “cura” con massaggi, bagni in acqua e recupero attivo (allenamenti leggeri, poco intensi). Invece, quello parasimpatico è attribuito a lavori aerobici molto voluminosi. Per tornare in un buono stato di salute, anche qui è consigliato fare bagni in acqua (possibilmente fredda) e recuperare attivamente con allenamenti poco intensi e poco voluminosi.
Sintomi
I sintomi (e segni) principali del sovrallenamento sono i seguenti:
Affaticamento persistente
Difficoltà a dormire
Dolori muscolari cronici
Apatia
Difficoltà a concentrarsi
Depressione
Aumento frequenza cardiaca a riposo
Aumento pressione arteriosa a riposo
Disturbi gastro-intestinali
Perdita di peso
Squilibri ormonali
Calo delle prestazioni
Segni di una disfunzione neuro-endocrina [1] con elementi di dominanza o di riduzione del sistema nervoso simpatico.
Prevenzione e rimedi
Un po’ di indicazioni per prevenire il sovrallenamento…
Monitorare parametri come la FC o la pressione a riposo
Individualizzare l’allenamento
“Giocare” bene con valori allenanti (intensità, volume, densità, frequenza)
Sostenere il sistema immunitario con la vitamina C, D ed i grassi Omega-3
Parlare molto con l’atleta, in modo da riceve i feedback sulle sue sensazioni e sul suo stato di salute psico-fisico
Nei casi peggiori può essere utile rivolgersi a delle figure esterne (medico, psicologo, nutrizionista) ed effettuare degli esami clinici specifici (ematocrito, emoglobina, azotemia, cortisolo, testosterone, CPK).
*in Medicina dello sport, lo scarico attivo (minor volume e/o intensità di allenamento) è consigliato per l’overreaching e lo scarico passivo (periodo nel quale non ci si allena) per l’overtraining vero e proprio.
Riassunto di un po’ tutto quella che è stato detto fino ad ora [7]
Conclusioni
Risulta chiaro che più che alle persone che si allenano per passione 2-3-4 volte a settimana, la popolazione maggiormente esposta al rischio overtraining sia quella degli sportivi professionisti. I professionisti possono arrivare ad allenarsi anche tre volte al giorno e proprio per questo motivo è di fondamentale importanza monitorare tutti i parametri precedentemente citati ed avere sempre un buon dialogo con gli atleti.
Parodi G. – Medicina dello sport (Dispense Universitarie SUISM, a.a. 2016/2017) Weineck J. – Biologia dello sport (Calzetti Mariucci, 2013) Wilmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Ediz. Calzetti Mariucci, 2005) Olsen L. – Overtraining: A Molecular Perspective (2016) Armstrong L. E. et al. – The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology (2002) Budgett, R. – Fatigue and underperformance in athletes: the overtraining syndrome (1998) Budgett, R. – Overtraining syndrome (1990) James D. V. B. et al. – Heart rate variability: Effect of exercise intensity on postexercise response (2012) Kreher, J. B. et al. – Overtraining Syndrome: A Practical Guide (2012) Burnstein B. D. – Sympathetic vs Parasympathetic overtraining – Selecting the proper modality to maximize recovery (2017) 1 Fry A. C. – Resistance exercise overtraining and overreaching. Neuroendocrine responses (1997) 2 Kuipers H. et al. – Overtraining in elite athletes. Review and directions for the future (1988) 3 Uusitalo A. L. et al. – Heart rate and blood pressure variability during heavy training and overtraining in the female athlete (2000) 4 Morgan et al. – Psychological monitoring of overtraining and staleness (1987) 5 Lehmann M. et al. – Training-Overtraining: Influence of a Defined Increase in Training Volume vs Training Intensity on Performance, Catecholamines and Some Metabolic Parameters in Experienced Middle- And Long-Distance Runners (1992) 6 Verma S. K. et al. – Effect of four weeks of hard physical training on certain physiological and morphological parameters of basket-ball players (1978) 7 Mackinnon L. et al. – Overtraining (1991)
I glutei non crescono in alcun modo, anche allenandoli duramente? Che voi siate uomini o donne poco importa, perché in questo articolo andremo a parlare di un esercizio potenzialmente adatto a chiunque: l’hip thrust. Buona lettura!
Ah ma è Ronco?
Dat ass
Esecuzione tecnica
Si appoggia la base delle scapole ad una panca, tenendo il busto dritto, parallelo al suolo, tibia e femore devono creare un angolo retto (90° circa). I piedi devono essere ben piantati a terra, è importante che la superficie di appoggio non sia scivolosa. Il bilanciere deve essere posizionato all’altezza della anche. Si accompagna il peso verso il basso sfiorando il pavimento con il sedere e successivamente si spinge il peso verso l’alto, sfruttando più che si può la mobilità dell’anca (foto sotto). Per evitare infortuni, riveste una certa importanza l’atteggiamento della colonna vertebrale, specialmente quello della regione lombare. La spina dorsale deve avere un posizionamento neutro, non deve essere iperestesa. Al limite, per evitare ciò, si può provare a “guardare in avanti” con la testa, ricercando così una leggera e momentanea cifosi cervicale.
Inizio concentrica
Fine concentrica
Perché può essere migliore dello squat?
Il gluteo, lavorando come estensore dell’anca, è il muscolo maggiormente coinvolto nell’intero esercizio. E le elettromiografie, benché non esenti da limiti, lo confermano [1]. In sinergia con i glutei lavorano anche molti altri muscoli, in primis gli ischiocrurali ed il grande adduttore (anche loro sono estensori dell’anca). Se l’esecuzione dell’esercizio è corretta, lo scarso movimento di estensione e flessione dell’articolazione del ginocchio fa si che l’attivazione di altri grossi muscoli (es. quadricipiti) sia parecchio limitata. Questo ultimo punto ci spiega perché l’hip thrust sia un esercizio in grado di isolare meglio i glutei. Quest’ultimi lavorano molto anche nello squat, tuttavia nel movimento di accosciata intervengono anche una miriade di altri muscoli, invece nell’hip thrust il movimento è più “concentrato” sui glutei. Non che la cosa sia necessariamente negativa, tutt’altro, resta però il fatto che se si vuole andare a colpire il lato B, l’hip thrust sia più funzionale.
Inoltre, per eseguire lo squat è necessaria una certa lordosi nella bassa schiena, nell’hip thrust no, per quest’ultimo è richiesto un atteggiamento neutro della spina dorsale, pertanto anche le persone con una scarsa lordosi possono beneficiare di questo esercizio (ciò riguarda soprattutto le donne).
Come iniziare a farlo
E’ consigliabile apprendere lo schema motorio prima a corpo libero, poi con dei carichi molto bassi, utilizzando magari l’elastico, per poi passare a sovraccarichi più importanti. Perché l’elastico? Perché a livello propriocettivo può essere utile posizionare una banda elastica qualche centimetro sopra le ginocchia, questo perché il gluteo è un abduttore dell’anca e trovando l’opposizione della resistenza elastica si contrae anche per evitare l’adduzione degli arti inferiori.
Come mostrato nella foto qui sotto, l’hip thrust può essere eseguito anche con altri tipi di sovraccarico oltre al classico bilanciere (dischi, manubri, kettlebells). Anche se indubbiamente il bilanciere rimane l’attrezzo con cui è possibile caricare più peso, ricordiamo che il concetto di sovraccarico progressivo è uno dei pilastri dello sviluppo muscolare, inoltre i grossi carichi aumentano il reclutamento muscolare (legge di Henneman) [2,3,4].
In un contesto di allenamento in monofrequenza, cioè in cui si allenano specificamente gli arti inferiori (glutei compresi), un esempio di routine potrebbe essere:
Lunedì: petto, spalle, tricipiti;
Mercoledì: dorso, bicipiti, addome
Venerdì: gambe e glutei
Hip thrust 4x8
Leg extension 3x15
Leg curl 3x12
Calf machine 4x10
Invece, in multifrequenza (più di un allenamento a settimana):
A-B-A
A = petto, dorso, tricipiti, polpacci, addome
B = spalle, trapezi, bicipiti, gambe e glutei
Lento avanti con manubri 4x8
Alzate laterali 4x12
Scrollate con manubri 3x10
Curl su panca inclinata 3x10
Hammer curl ai cavi 3x8-8-8 (drop set)
Squat 5x8
Hip thrust 4x10
Ovviamente la scheda è un esempio, qualcosa di molto indicativo. L’allenamento va cucito su misura ad ogni persona, possibilmente da un personal trainer competente.
Per una corretta crescita muscolare l’alternanza degli stimoli allenanti è sempre la miglior cosa, insieme alla costanza
Conclusioni
Specificato che gli esercizi magici e adatti a tutti purtroppo non esistono, seguendo le regole dettate dalla fisiologia articola e biomeccanica umana, l’hip thrust è indubbiamente un movimento molto interessante per gli arti inferiori, specialmente per i glutei. Sulla carta anche migliore dello squat, degli affondi, degli esercizi alle macchine, eccetera. E, se opportunamente periodizzato, nel lungo periodo può portare a grandi risultati, sia in termini estetici (ipertrofia) che di forza.
1 Contreras B. et al. – A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyographic Activity in the Back Squat and Barbell Hip Thrust Exercises (2015) 2 Henneman E. et al. – Functional significance of cell size in spinal motoneurons (1965) 3 Henneman E. et al. – Properties of motor units in a homogeneous red muscle (soleus) of the cat (1965) 4 Henneman E. et al. – Properties of motor units in a heterogeneous pale muscle (m. gastrocnemius) of the cat (1965)
Al contrario di quanto possono pensare i non addetti ai lavori, il doping non è solo mera ipertrofia o resistenza e in questo articolo ne avremo la conferma. Quindi prendetevi due minuti di tempo e leggetevi quanto segue.
Caratteristiche e funzioni
I β-bloccanti, sono una classe di farmaci che agisce bloccando i recettori β-adrenergici. Possono bloccarli indistintamente tutti o solo alcuni. Invece, i β2 agonisti, detti anche agonisti selettivi, interagiscono con solamente con i recettori adrenergici di tipo β2.
Ma ora occorre fare un passo indietro: volendo andare dritti al punto, quelli adrenergici sono dei particolari recettori situati su numerosi organi o tessuti del corpo umano. Grazie ad essi, ormoni come le catecolamine possono espletare lo loro funzioni fisiologiche su, appunto, tessuti od organi. I recettori possono essere di due tipi: dopaminergici (D1, D2, D3, D4, D5) o adrenergici (α1, α2, β1, β2, β3). Ora a noi interessano solo quest’ultimi.
A seconda del recettore col quale interagiscono i farmaci, essi possono portare a diversi effetti su svariati tessuti ed organi.
I farmaci β-bloccanti e β2-agonisti vengono utilizzati principalmente per il trattamento di alcune patologie polmonari, come l’asma, cardiache e come antidepressivi. Come possiamo notare nella tabella riportata sopra, i farmaci che interagiscono con i recettori adrenergici β2 causano, fra le altre cose, un rilassamento dei bronchi (da qui la loro utilità per numerose patologie respiratorie).
La continua ricerca nel creare sostanze selettive nei confronti dei recettori adrenergici β2 ha dato come risultato quello di ottenere dei farmaci maggiormente sicuri (minori effetti collaterali).
A seconda della durata dell’effetto dei vari farmaci, i β2-agonisti possono suddividersi in tre categorie principali: ad azione rapida (fenoterolo, salbutamolo), ad azione lunga (bambuterolo, clenbuterolo) e ad azione ultralunga (indacaterolo).
Effetti dopanti
Gli antidepressivi beta-bloccanti, riducono la forza di contrazione a livello cardiaco, questo li rende utili in sport di precisione, dove è necessario muoversi poco e rimanere concentrati, come ad esempio il tiro con l’arco.
L’utilizzo di farmaci β2-agonisti a dosaggi particolarmente elevati, che vanno quindi oltre il terapeutico, è associato ad un anabolismo dei tessuti e a un’incremento della forza. Basti pensare che il clenbuterolo è somministrato ad alcuni capi di bestiame in allevamenti al di fuori della Comunità Europea per far crescere gli animali più in fretta.
Negli anni passati, i test nei quali gli atleti son risultati positivi ai β2-agonisti hanno raggiunto il 6% dei test positivi totali. Attualmente la percentuale è leggermente in calo.
Struttura chimica del clenbuterolo
Anti-doping ed effetti collaterali
Per i motivi riportati sopra, anche se inalati, i farmaci β-bloccanti e β2-agonisti sono vietati dalle norme anti-doping (WADA), fatta eccezione per un ristretto numero di essi che, a certi dosaggi, e con opportuna “dichiarazione di uso”, sono tollerati.
I principali effetti collaterali riscontrati con l’abuso di questi farmaci sono:
Tremore
Crampi muscolari
Cefalea
Tachicardia
Iperglicemia
Disturbi del sonno
Stanchezza
Calo del desiderio sessuale
Impotenza (rara)
Nausea e vomito
Estremita di mani e piedi fredde (vasocostrizione periferica)
Grazie per l’attenzione!
…
Questo articolo è a scopo puramente divulgativo, quanto riportato sopra è da considerarsi libera informazione e non vuole invitare in alcun modo le persone ad assumere sostanze che ricordo essere dannose e illegali.
E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!
Cos’è l’EPO?
Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.
Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.
N.B: benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).
Come incrementare i livelli di EPO
Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].
Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.
Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.
Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.
Risposte fisiologiche e adattamenti all’allenamento ad alta quota
La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].
Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].
*Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.
In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].
Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2, questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.
La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.
Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].
Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.
Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.
Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.
Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.
“La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione. Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.
Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.
L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].
Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.
Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.
Sulla questione muscolare non si sa molto altro.
Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).
Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:
diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
aumento del nervosismo;
peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?
L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.
Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.
Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.
Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.
In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.
Allenarsi in alto e gareggiare in basso
Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.
Allenarsi in basso e gareggiare in alto (live high and train low)
Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.
Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].
Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).
Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]
Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.
Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.
Controindicazioni più e meno gravi dell’allenamento in altura
Scottature solari e oftalmia delle nevi;
irritazioni delle vie respiratorie;
mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
emorragia retinica (si verifica dai 6000 m in poi).
Due parole sulla training mask (TM)
Negli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.
Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.
A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).
Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]
“Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro: – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici. – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%). – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta. – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti). – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].
Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).
Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].
Conclusioni
Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.
Willmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005) Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017) Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016) 1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991) 2 Strømme A. B. – Training at altitude (1980) 3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983) 4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007) 5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996) 6 Schoene et al. – Limits of human lung function at high altitude (2001) 7 E. R. Buskirk et al. – Maximal performance at altitude and on return from altitude in conditioned runnerd (1967) 8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate 9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975) 10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967) 11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967) 12 Schmitt et al. – ??? (2008) fonte primaria errata sul libro di riferimento 13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000) 14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001) 15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004) 16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989) 17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988) 18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005) 19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973) 20 Chapman et al. – Individual variation in response to altitude training (1998) 21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002) 22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016) 23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016) 24 Ness J. – Is live high/train low the ultimate endurance training model?
Per quanto riguarda il benessere psicofisico e la performance, l’alimentazione gioca un ruolo cruciale, sul quale va prestata molta attenzione, sia per gli sportivi che per i soggetti sedentari.
La stragrande maggioranza delle persone che frequenta centri fitness e palestre ha come obiettivo principale un aumento di massa magra a discapito di quella grassa.
Molti però non sono particolarmente avvezzi agli esercizi canonici di sala e per questo negli ultimi anni,da quando i Box Cross-Fit e altre tipologie di strutture affini, hanno introdotto attrezzi tipici di Ginnastica e Calisthenics, le zone adibite a questo tipo di attività sono sempre più affollate. Va chiarito però che le attività sopra citate differiscono per fine ultimo in quanto il calisthenics ha come priorità l’acquisizione di skill a difficoltà crescente che di conseguenza portano ad un miglioramento in termini di forza generale ed ipertrofia mentre se usiamo l’allenamento a corpo libero ponendo come priorità assoluta l’aumento di massa muscolare, i protocolli allenanti e la scelta degli esercizi cambiano decisamente.
In questo pezzo porremo l’attenzione sull’allenamento senza uso di sovraccarico esterno a scopo ipertrofico. Vanno dunque scanditi e chiariti alcuni punti prima di partire ad allenarsi:
1) Allenarsi a corpo libero vuol dire discostarsi leggermente, soprattutto se si ha un background fisico di un certo livello, dal solito range di serie x rep. Il volume sarà molto alto e maggiore sarà il vostro livello di allenamento tanto maggiore sarà il rapporto di quest’ultimo con l’intensità.
2) Fattore positivo da aggiungere agli altri è anche il fatto che questo tipo di allenamento ha un discreto impatto sul sistema cardiocircolatorio,dunque il dispendio calorico per seduta sarà superiore a quello di una normale seduta con i pesi.
3) Maggiore sostenibilità degli allenamenti. A livello articolare e muscolare, allenarsi a corpo libero dovrebbe essere molto meno traumatico di allenarsia con i sovraccarichi. Questo ci darà maggiore margine di errore durante l’esecuzione degli esercizi (sbagliare uno squat libero non è come sbagliarlo sotto 200kg-in teoria) ed anche la possibilità di allenarci quasi tutti i giorni in quanto soprattutto nella fase iniziale della programmazione, il danno muscolare sarà molto assimilabile in termini di recupero.
4) Allenarsi usando il proprio corpo sviluppando esercizi in multiplanarietà sfruttando la libertà di movimento e il movimento stesso è, a differenza di molte “formule magiche e miracolose”, il vero sunto dell’ allenamento funzionale.
Quindi perché non mollare tutto e allenarsi solo ed esclusivamente così? Perché dipende da cosa volete :
1) Per arrivare a canoni estetici da Bbuilder (volumi al limite del natiral….e a volte no) servono i pesi in quanto gli sviluppi e soprattutto le conseguenze richieste dagli stimoli allenanti, prescindono molto dall’idea reale dell’allenamento a corpo libero.
2) Ad un certo punto bisogna zavorrare gli esercizi in quanto il peso corporeo non basta più come stimolo allenante. Questo però sopraggiunge molto in seguito in quanto prima di passare al sovraccarico degli esercizi si procede con la modifica di altri fattori determinanti.
Bene, Pronti? Via…
Partiamo con due esempi giornalieri di allenamento :
Warm up 10′ cardio + mobility
MAIN PART:
A – PRINCIPIANTE
· Push up regular 3×15;
· Triceps extension on bench 2×10;
· Inverted Row 3×15;
· Inverted Row chin grip 2×10;
· Squat 5×20
· Sit up 3xmax
B – AVANZATO
· One arm push up 4×10+10
· Diamond push up 2xmax
· Pull up 3×20
· Chin up 2xmax
· Pistol 4×10+10
· Toes to bar 3xmax
Questi sono solo due esempi di come si ci potrebbe allenare con l’ausilio unico del proprio peso corporeo. Naturalmente, non essendo contestualizzati in programmazioni a lungo raggio settate su particolari obiettivi, i precedenti esempi potrebbero significare tutto e niente allo stesso tempo.
Elemento da non sottovalutare è anche il fattore economico: sbarra + tappetino (opzionale) e si ci può allenare in maniere completa, risparmiando soldini da poter investire in un personal trainer che vi programmi il lavoro (unico modo per raggiungere obiettivi concreti).
Detto questo bando alle ciance e via con gli allenamenti!
La colonna vertebrale è una complessa struttura osteofibrocartilaginosa, molto resistente e fondamentale per il movimento umano. Nelle prossime righe parleremo della sua osteologia e delle principali patologie che la riguardano. Ricordiamo tuttavia, che quella che segue è libera informazione, per delle consulenze bisogna rivolgersi alle opportune figure mediche di competenza.
Colonna vertebrale: quello che c’è da sapere
Questa complessa struttura osteofibrocartilaginosa è molto estesa, va dal capo al coccige. Ha una lunghezza media di 70 cm per gli uomini e di 60 cm per le donne. La colonna vertebrale consta di cinque regioni, le quali hanno un numero variabile di vertebre (ossa che costituiscono appunto la colonna), che in totale è di 33. Le regioni sono le seguenti:
Regione cervicale: consta di sette vertebre (C1,2,3,4,5,6,7), le prime due, più famose, sono l’atlas (C1) e l’axis (C2). La regione cervicale regge la testa e permette al collo una grande escursione articolare.
Regione dorsale(o toracica): è formata da dodici vertebre (T1-12), è la regione più ampia di tutta la colonna vertebrale, inoltre, unendosi alle costole forma la cassa toracica. Questo tratto possiede una rigidità elevata per evitare movimenti, specialmente flessioni, troppo bruschi e pericolosi.
Regione lombare: composta da cinque vertebre (L1-5), la sua struttura è particolarmente robusta e mobile.
Regione sacrale: consiste in un unico osso composto dalla fusione di cinque vertebre.
Regione coccigea: osso formato dalla fusione di quattro-cinque vertebre.
Alcune delle principale funzioni della colonna vertebrale sono le seguenti: supporto e protezione del sistema nervoso centrale e periferico, sostegno strutturale, stabilità e protezione degli organi interni.
Le vertebre sono connesse mediante un disco fibrocartilaginoso, forte ed elastico, il quale fa da ammortizzatore e permette un certo movimento. Questo disco è chiamato disco intervertebrale.
Prima di passare alle patologie ci sono un alcune piccole cose da far notare riguardo alle innumerevoli “curvature” della colonna vertebrale.
Se osservata lateralmente, saltano all’occhio le due convessità posteriori, dette cifosi e le due convessità anteriori: le lordosi. Rientrano nel primo gruppo la zona toracica e sacrale, sono invece delle lordosi la zona cervicale e quella lombare. Questa alternanza di curve, fa sì che la colonna vertebrale sia piuttosto mobile e resistente, garantendo l’equilibrio in posizione eretta. Le lordosi permettono gradi di movimento molto maggiori rispetto alle cifosi, specialmente la regione lombare, la quale ha una curvatura un po’ più marcata. Nella figura a sinistra, si può osservare come un curvatura eccessiva (iperlordosi, ipercifosi) anche di una sola regione, alteri inevitabilmente anche gli altri tratti della colonna (linea gialla). Queste curve, oltre ad influenzare postura e movimento, interferiscono nello sviluppo muscolare. Ma questo di questo ne parleremo meglio nelle prossime righe.
Principali patologie
Senza tirarla troppo per le lunghe, le principali patologie della colonna vertebrale sono tre: scoliosi, cifosi e lordosi.
Scoliosi: è una deviazione della colonna vertebrale (laterale e di rotazione) che interessa sia la regione dorsale che quella lombare, anche se spesso è più evidente nella prima. Esistono più tipi di scoliosi, i quali si possono classificare nel seguente modo:
Scoliosi congenita, derivante da anomalie vertebrali presenti alla nascita.
Scoliosi idiopatica (o dell’adolescenza), non è ancora stata individuata la causa, si sa solo che è spesso ereditaria e che colpisce soprattutto il sesso femminile. A seconda dell’età in cui si manifesta può essere a sua volta sub-classificata nel seguente modo: infantile (dalla nascita fino ai 3 anni di età), giovanile (dai 4 ai 9 anni) e adolescenziale (dai 10 anni fino al termine della maturazione scheletrica) o adulta.
Scoliosi neuromuscolare, si sviluppa come sintomo secondario di altre patologie (paralisi cerebrale, atrofia muscolare o traumi fisici).
Cifosi: la normale cifosi è la curvatura fisiologica della regione dorsale. Quando però l’angolo della cifosi supera i 45° si parla di ipercifosi (figura sotto).
A sinistra la colonna vertebrale di una persona affetta da ipercifosi (angolo di 45°) e, a destra, una colonna con una cifosi fisiologica.
La cifosi, se accentuata, può suddividersi nella seguente maniera:
Cifosi posturale, è la più diffusa ed è attribuita alle posture sbagliate assunte durante la vita quotidiana. Raramente provoca dolore o causa particolari problemi.
Cifosi di Scheuermann, la causa è sconosciuta, questa forma di cifosi può causare dolore, specialmente nell’apice della curva. Se non trattata correttamente, con l’attività fisica può anche peggiorare.
Cifosi congenita, alla nascita la colonna vertebrale presenta dei problemi strutturali e quindi, mano a mano che il bambino si sviluppa, si forma una cifosi sempre più accentuata.
Lordosi: è la curvatura fisiologica della colonna vertebrale all’altezza della regione cervicale e lombare. Quando la lordosi tende ad appiattirsi si parla di ipolordosi, al contrario, quando la curvatura aumenta si parla di iperlordosi. Siamo davanti ad una iperlordosi quando l’angolo di curvatura è superiore ai 40-50° (una lordosi normale ha un angolo di 35°). Tra l’altro, chi ha molto a che fare con alcune discipline sportive può arrivare a soffrire proprio di quest’ultima patologia, per esempio i pesisti.
Abituarsi ad assumere posture errate e squilibri muscolari possono portare alle due patologie precedentemente citate (ad esempio addome e glutei deboli), specialmente nel genere femminile. Una lordosi cervicale non fisiologica modifica il centro di gravità del cranio e porta ad un sovraccarico muscolare e articolare, tutto ciò causa problemi meccanico-cervicali.
Nella foto sopra, a sinistra una postura corretta, con delle curve assolutamente fisiologiche e a destra un soggetto affetto da ipercifosi ed iperlordosi.
Tuttavia, anche una scarsa lordosi può portare a problematiche di vario genere. Ad esempio, una recente revisione sistematica/meta-analisi [1], molto nota in letteratura scientifica, ha messo a confronto tredici studi sui dolori alla bassa schiena e la postura, analizzando quasi 2000 pazienti (796 pazienti con dolori lombari e 927 sani). Per farla breve, i pazienti sani avevano tutti una maggior lordosi e fra quelli patologici, con la schiena più “piatta”, c’era un’elevata percentuale di soggetti affetti da ernie del disco e degenerazioni discali. Per maggiori informazioni potrebbe essere utile la lettura di quest’altro articolo.
Influenza sullo sviluppo muscolare
Una colonna vertebrale affetta da patologie, come è facilmente intuibile, può compromettere un buono sviluppo della muscolatura del tronco.
Per esempio, un soggetto con una cifosi dorsale particolarmente accentuata e spalle anteposte (o chiuse) può avere difficoltà a lavorare con i pettorali e, per i movimenti di spinta, utilizzerà soprattutto i deltoidi. Oppure una persona con una zona lombare piatta (ipolordosi), avrà per forza di cose uno sviluppo dei glutei molto limitato.
Dispense Universidad de Almería (Ciencia de la actividad fisica y del deporte) Segina M., Pansini L. – Lordosi lombare e mal di schiena: qual è la verità? (2017) 1 Chun S. W. et al. – The relationships between low back pain and lumbar lordosis: a systematic review and meta-analysis (2017)
Arrivati all’ultimo articolo della raccolta di pezzi sul largo impiego dei KB nel mondo sportivo/fitness, parleremo oggi di questo meraviglioso attrezzo in funzione della preparazione atletica per gli sport da combattimento.
Cosa lo rende così adatto a questo utilizzo? Il fatto che il kettlebell-Training renda migliori un po’ in tutto, senza far raggiungere picchi esagerati di nessuna capacità organica in particolare. In poche parole: se ti alleni bene con le ghirye sarai più potente, più resistente e se adotti una giusta alimentazione anche con rapporti di % BF (Massa Grassa)/LM(Massa Magra) ottimi.
Andiamo un attimo più affondo adesso. Come (altro…)
Non è raro vedere atleti, soprattutto sui social network, immergersi nell’acqua gelida. Ma cosa c’è dietro a tutto questo? Saldi principi fisiologici oppure le solite mode passeggere? Scopriamolo insieme!
Quello che segue è un riassunto ed adattamento di un articolo in lingua straniera riportato su Science for Sport. Buona lettura!
Introduzione
Si ricorre a tecniche di recupero come quella delle immersioni in acqua fredda per minimizzare il rischio di infortunio e per evitare il sovrallenamento (overtraining).
Gli effetti delle immersioni in acqua fredda non sono ancora del tutto chiari, si ipotizza che siano utili per il recupero muscolare e la riduzione degli stati infiammatori sia per gli atleti di sport di forza/potenza (allenamento con i sovraccarichi) che di resistenza (corsa, ciclismo). Recenti studi sostengono che il tempo ottimale di immersione (altro…)