Tag: performance

  • Tripla estensione: teoria e performance

    Tripla estensione: teoria e performance

    Ne avete mai sentito parlare? No?! Allora siete nel posto giusto.

    Definizione

    Con tripla estensione (triple extension) si intende la contemporanea estensione degli arti inferiori, che obbligatoriamente passa per tre articolazioni: caviglia, ginocchio ed anca. Per capire quale movimento possa o meno riguardare questo “meccanismo”, è sufficiente tracciare un paio di linee e misurare un angolo. Vediamo rapidamente come.

    Comprendere il meccanismo

    Osserva un atleta di profilo, possibilmente fermo (può anche andar bene uno scheletro), e traccia due linee. La prima deve partire dalla caviglia e andare all’anca, la seconda deve originare dal ginocchio per giungere anch’essa all’anca (ovviamente vale anche il passaggio opposto: dall’anca alla caviglia e al ginocchio).

    Dalla teoria alla pratica

    Sotto, una rappresentazione del Dott. Formicola (modificata) di quanto appena detto, riferita allo squat ed allo stacco da terra (più alcune loro varianti).


    In ordine, da sinistra a destra: squat low bar, squat high bar, front squat, overhead squat, stacco regular, stacco con trap bar e stacco sumo. Come si può osservare nell’imagine, più un movimento richiede profondità di accosciata e più l’angolo generato dall’incrociarsi delle linee è ampio. Una flessione che genera un angolo molto ampio abbisognerà successivamente, per portare l’esercizio a concludersi, di una tripla estensione notevole. Semplificando molto, più l’angolo derivante dalle due linee è grande e più un allenatore/preparatore può capire se un determinato esercizio sia indicato o meno per potenziare la spinta verticale prodotta dagli arti inferiori attraverso la fisiologica estensione delle tre articolazioni (caviglia, ginocchio, anca).

    La tripla estensione si ha in molti esercizi tipici del fitness, durante la corsa, i salti, quando ci alziamo in piedi da seduti, e così via. La chiave sta tutta nel mettere a fuoco le richieste biomotorie di un dato sport e poi decidere come procedere con la scelta degli esercizi, tenendo a mente che la presenza di uno squat non esclude necessariamente quella di uno stacco o di esercizi pliometrici. Mr. Pinco Pallino è un centometrista? Allora dovrà lavorare sulla tripla estensione! Prima ad angoli più aspecifici (full squat), poi più simili a gesto di gara (mezzo squat). Mr. Pinco Pallino ha poi un caro amico che pratica MMA? Allora anche quest’ultimo, in una fase più aspecifica, dovrà lavorare con esercizi in grado di fare estendere (o distendere) per bene gli arti inferiori tramite le solite tre articolazioni chiamate in causa. Nota a margine: nelle MMA, come un po’ in tutti gli sport da combattimento con fasi lottatorie, oltre che la spinta verticale (verso l’alto) conta molto, se non di più, quella sul piano orizzontale e quindi verso avanti (double leg, single leg, molte proiezioni da body lock). Pertanto è consigliabile dedicarsi anche a “spinte orizzontali” come balzi verso avanti o sled push.

    Mentre gli esercizi per l’upper body, ossia la parte superiore del corpo, generalmente vengono suddivisi in due categorie: esercizi di spinta e di trazione/tirata (potremmo poi disquisire sulla legittimità di tale semplificazione, in anatomia si studia che in realtà i muscoli trazionano le ossa), per le gambe si parla di esercizi anca-dipendenti e ginocchio-dipendenti. Nei primi il grosso della flesso-estensione richiesta da un determinato movimento è principalmente a carico dell’articolazione dell’anca, nei secondi delle ginocchia. Molti tecnici dello sport vi diranno che lo stacco da terra è un esercizio anca-dipendente e invece lo squat è ginocchio-dipendente. In realtà ogni esercizio ha un mix di entrambe le cose, pertanto anche questa categorizzazione pare essere figlia di una visione un po’ semplicistica del movimento umano. Definizione per definizione, teoria per teoria, forse è auspicabile anteporre a ciò la valutazione dell’estensione sinergica delle tre articolazioni degli arti inferiori (triple extension). Solo se la tripla estensione è efficiente potrà esserci un’ottima propulsione eseguita dagli arti inferiori (la TP serve a “spingere” verso avanti).

    Conclusioni

    Studi, dati alla mano, hanno suggerito come un allenamento specifico finalizzato a potenziare l’estensione simultanea delle articolazioni degli arti inferiori sia indicato per incrementare la capacità di salto verso l’alto (vertical jump)1, fin qui nulla di nuovo. Inoltre, Loturco e colleghi (2016) hanno notato un effetto positivo dello Squat Jump le cui caratteristiche meccaniche: «which closely resemble the “segmental triple extension” elicited during the sprinting strides»2, sugli sprint effettuati su distanze di 5 e 30 metri. Normalmente si parla di tripla estensione durante la corsa, le alzate olimpiche3 e lo squat. Riguardo quest’ultimo, i soggetti con una più efficiente tripla estensione si sono dimostrati essere degli “squattatori” sopra la media (l’accosciata sembra essere ottima per valutare la TE di un atleta)4. Sempre riguardo questo esercizio: «La salita si ottiene principalmente attraverso la tripla estensione di anche, ginocchia e caviglie, continuando fino a quando il soggetto non è tornato alla posizione iniziale estesa. I muscoli posteriori del tronco, in particolare gli erettori spinali, vengono reclutati tramite l’azione muscolare isometrica per sostenere una postura eretta durante l’intero movimento di squat. Inoltre, i muscoli posteriori del tronco sono assistiti dai muscoli addominali anteriori e laterali per irrigidire ulteriormente il busto creando tensione per la parete addominale»5.

    Tirando le somme, scegliete bene quali esercizi fare ed eseguiteli correttamente. Con pazienza e dedizione arriveranno i risultati. Tenendo a mente che, come sempre, periodizzare saggiamente variando gli stimoli allenanti è la miglior cosa da fare per ottenere risultati sul lungo periodo.

    Buon allenamento!


    Bibliografia

    1 Eunwook Chang, Marc F Norcross, Sam T Johnson, Taichi Kitagawa, Mark Hoffman – Relationships between explosive and maximal triple extensor muscle performance and vertical jump height. J Strength Cond Res. 2015 Feb;29(2):545-51
    2 Irineu Loturco, Lucas Adriano Pereira, Ronaldo Kobal, Thiago Maldonado, Alessandro Fromer Piazzi, Altamiro Bottino, Katia Kitamura, Cesar Cavinato Cal Abad, Miguel de Arruda, Fabio Yuzo Nakamura – Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises. PLoS ONE 11 (4): e0153958
    3 Timothy J Suchomel, Paul Comfort, Michael H Stone – Weightlifting pulling derivatives: rationale for implementation and application. Sports Med. 2015 Jun;45(6):823-39
    4 Robert J Butler, Phillip J Plisky, Corey Southers, Christopher Scoma, Kyle B Kiesel – Biomechanical analysis of the different classifications of the Functional Movement Screen deep squat test. Sports Biomech. 2010 Nov;9(4):270-9
    5 Gregory D. Myer, Adam M. Kushner, Jensen L. Brent, Brad J. Schoenfeld, Jason Hugentobler, Rhodri S. Lloyd, Al Vermeil, Donald A. Chu, Jason Harbin, and Stuart M. McGill – The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond J. 2014 December 1; 36(6): 4–27
    Corebo Lite – La tripla estensione nello squat e caso studio (2020, link)
    The Myth of Triple Extension (simplifaster.com)

  • Le asimmetrie nelle performance di salto

    Le asimmetrie nelle performance di salto

    Qual è il rapporto fra le asimmetrie ed i salti verso l’alto? È un problema avere una gamba più forte dell’altra? Scopriamolo insieme!

    Quanto segue è il sunto di una tesi compilativa elaborata dal sottoscritto per la laurea triennale in Scienze Motorie e Sportive presso l’Università degli Studi di Torino (Unito). Buona lettura.

    Prestazioni

    In letteratura scientifica sono presenti un paio di studi che in particolare che hanno correlato l’asimmetria ad un calo delle prestazioni di salto [1,2]. Secondo Bailey et al. [2] vi è una correlazione negativa fra le asimmetrie palesate durante il test di tirata isometrica a metà coscia (isometric midthigh pull, IMTP) e l’effetiva performance nei salti verso l’alto (minor altezza raggiunta); tuttavia, l’indagine non ha esaminato l’asimmetria durante le attività di salto, né riporta la relazione tra forza di picco IMTP e asimmetria IMTP.

    Sopra, il test dell’isometric midthigh pull (Bailey et al., 2013).

    In un altro studio ancora [3], sempre Bailey e colleghi hanno confrontato le asimmetrie registrate in prestazioni di salto e nei test dell’IMPT (isometric midthingh pull), in una coorte di atleti del college. È venuto fuori che gli atleti con la maggior forza di picco nell’IMPT avevano un certo grado di corrispondenza fra le asimmetrie palesate nei salti e quelle nel test citato poco fa.

    Va però specificato che gli atleti più esperti ed allenati solitamente presentano un minor livello di asimmetrie, al contrario dei meno allenati [4,5]. A riguardo di ciò, uno studio del 2014 ha dimostrato come siano sufficienti 7 settimane di allenamento per ridurre un’asimmetria di forza riscontrata nello squat isometrico con bilanciere (si parla sempre di soggetti poco allenati o totalmente sedentari) [5]. Pertanto è buona cosa misurare le asimmetrie di forza, e considerare i dati ottenuti come attendibili, solo quando gli atleti hanno una buona confidenza con il gesto tecnico.

    Qui sotto, il mezzo squat isometrico, da Bazyler C. D. et al. (2014).

    Bell D. R. e colleghi non hanno notato alcuna influenza, né positiva né negativa, delle asimmetrie di forza fra gli arti inferiori (inter-limb) sulle prestazioni di salto (CMJ), osservazione tra l’altro avallata da un più recente studio che, nonostante delle asimmetrie medie del 9,3% in degli atleti maschili, non ha osservato cali nelle prestazioni di salto80.

    Sopra, la raffigurazione del grado di asimmetria in 13 atleti di sesso maschile da Teixeira R at al. (2020).

    Non ci sono però dati che possano concretamente far pensare ad un maggiore rischio infortuni associato ad eventuali asimmetrie.

    Grazie per l’attenzione.


    Bibliografia

    [1] Chris Bailey, Kimitake Sato, Ryan Alexander, Chieh-Ying Chiang, Michael H. Stone – Isometric force production symmetry and jumping performance in collegiate athletes. Journal of Trainology 2013:2:1-5.

    [2] Bell DR, Sanfilippo JL, Binkley N, Heiderscheit BC – Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J Strength Cond Res. 2014 Apr;28(4):884-91.

    [3] Bailey CA, Sato K, Burnett A, Stone MH – Carry-over of force production symmetry in athletes of differing strength levels. J Strength Cond Res. 2015 Nov;29(11):3188-96.

    [4] Bailey CA, Sato K, Burnett A, Stone MH – Force production asymmetry in male and female athletes of differing strength levels. Int J Sports Physiol Perform. 2015 May;10(4):504-8.

    [5] Caleb D. Bazyler, Chris A. Bailey, Chieh-Ying Chiang, Kimitake Sato, Michael H. Stone – The effects of strength training on isometric force production symmetry in recreationally trained males. Journal of Trainology 2014:3:6-10.

    [6] Rômulo Vasconcelos Teixeira, Victor Sabino de Queiros, Breno Guilherme Araújo Tinoco Cabral – Asymmetry inter-limb and performance in amateur athletes involved in high intensity functional training. Isokinetics and exercise science 28(1):83-89

  • Le asimmetrie nella corsa veloce

    Le asimmetrie nella corsa veloce

    Prosegue la serie di articoli sulle asimmetrie, ora è il momento di parlare di quelle che colpiscono gli sprinter.

    Quanto segue è un breve estratto di una tesi compilativa elaborata dal sottoscritto ed esposta presso l’Università degli Studi di Torino (Unito) per la laurea triennale in Scienze Motorie e Sportive. Buona lettura!

    Fisiologico o patologico?

    La questione asimmetrie sì, asimmetrie no, tutt’ora non è chiara in letteratura scientifica. Come fatto notare da una critical review comparsa nel 2018 sul Journal of Strength and Conditioning Research1, non possiamo dire con sicurezza se l’asimmetria di forza o esplosività fra i due arti inferiori influisca o meno sulle prestazioni degli sprinter. I dati sono contrastanti e certi studi sono metodologicamente mal svolti. Sannicandro e colleghi2 hanno osservato una influenza negativa delle asimmetrie negli sprint particolarmente brevi (entro i 20 m), Lockie et al.3 il contrario. Parecchi altri studi non hanno rilevato legami di alcun tipo fra eventuali asimmetrie e prestazioni sportive di corsa veloce o infortuni 4,5,6,7,8.

    Osservando il grafico riportato sopra, possiamo notare come importanti asimmetrie siano molto comuni negli sprinter di alto livello (Haugen T. et al., 2018; infografica a cura della pagina Strength and Conditioning Research).

    «Molti esperti di allenamento della forza, fisiologi e ricercatori hanno proposto che dovremmo cercare di ridurre l’asimmetria del movimento durante lo sport, al fine di migliorare le prestazioni e ridurre il rischio di infortuni. Tuttavia, come dimostra questo nuovo studio sugli sprinter di pista, l’asimmetria del movimento è estremamente comune durante lo sprint e non è correlata né alle prestazioni di sprint né al rischio di lesioni. È quasi come se l’asimmetria fosse una caratteristica del tutto naturale del movimento umano»6.

    Conclusioni

    Quindi, con le prove a nostra disposizione possiamo affermare che le asimmetrie nello sprint sono fisiologiche e non paiono essere dannose per gli atleti. Senza però avere la presunzione che questa sia la “verità definitiva”, dato che c’è ancora molto da indagare e da scoprire.

    Grazie per l’attenzione.


    Bibliografia

    1 Maloney S. J. – The relationship between asymmetry and athletic performance: A critical review (2018)
    2 Sannicandro I. et al. – Correlation between functional asymmetry of professional soccer players and sprint (2011)
    3 Lockie R. G. et al. – The relationship between bilateral differences of knee flexor and extensor isokinetic strength and multi-directional speed (2012)
    4 Exell T. et al. – Strength and performance asymmetry during maximal velocity sprint running (2017)
    5 Meyers R. W et al. – Asymmetry During Maximal Sprint Performance in 11- to 16-Year-Old Boys (2017)
    6 Haugen T. et al. – Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters (2018
    7 Lockie R. G. et al. – Relationship between unilateral jumping ability and
    asymmetry on multidirectional speed in team-sport athletes
    (2014)
    8 Lockie R. G. et al. – Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration (2017)

  • Tendini: salute e performance

    Tendini: salute e performance

    All’estremità di ogni fibra muscolare, la membrana plasmatica si fonde con una struttura fibrosa che si inserisce nell’osso (o sulla pelle), questa struttura è il tendine.

    Definizione generale

    I celebri ricercatori Wilmore e Costill nel libro Fisiologia dell’esercizio fisico e dello sport definiscono i tendini come strutture fatte di corde fibrose (o fili) di tessuto connettivo che trasmettono la forza generata dalle fibre muscolari alle ossa, creando così movimento. I tendini sono formati da fibroblasti e matrice extracellulare. I primi sintetizzano sostanze della matrice extracellulare, ossia il collagene (sostanza resistente) e l’elastina (sostanza più elastica).

    Come riporta uno studio di qualche anno fa [1], il tendine aiuta a facilitare il movimento e la stabilità articolare attraverso la tensione generata dal muscolo. I tendini possono anche immagazzinare preventivamente l’energia che poi sarà utilizzata per dei movimenti successivi. Ad esempio, il tendine di Achille può immagazzinare fino al 34% della potenza totale della caviglia.

    Salute

    Le fibre di collagene citate poco prima, sono fondamentali per fornire resistenza alla trazione del tendine. La disposizione parallela delle fibre di collagene fornisce resistenza al tendine permettendole di sperimentare grandi forze di trazione senza subire lesioni [2]. Quando un tendine sperimenta livelli di stress da carico superiori alla sua fisiologica capacità di trazione si verificano micro o macrotraumi, anche se difficilmente l’allenamento della forza porta a lesioni serie.

    Come ampiamente spiegato in passato (qui), la solidità dei tendini è in buona parte legata a fattori genetici individuali, quindi legati alla nascita e non modificabili. Pertanto con un corretto allenamento si può migliorare ma solo fino a un certo punto.

    Sopra, la classificazione degli infortuni tendinei (Brumitt J. et al., 2015).

    In caso di gravi danni al tendine, come una sua rottura dello stesso, il movimento è seriamente compromesso (perdita totale, o quasi).

    Letture consigliate
    - Genetica e predisposizione agli infortuni
    - Traumatologia e sport (1/3): infortuni, tessuti, entità delle lesioni e statistiche
    - Traumatologia e sport (2/3): fratture, distorsioni e infortuni muscolari
    - Traumatologia e sport (3/3): tendinopatie, terapie e prevenzione degli infortuni
    Adattamento, allenamento e performance

    Come evidenziano studi condotti sia sugli uomini che sugli animali, l’allenamento contro resistenze (pesi) è in grado di aumentare la rigidità dei tendini [3,4]. I tendini, sul lungo periodo, rispondono all’allenamento con i sovraccarichi aumentando il numero e la densità delle fibrille di collagene [5,6].

    Come riportato in letteratura scientifica [7] i tendini durante un ciclo di accorciamento-stiramento e durante le contrazioni isometriche massimali possono allungarsi fino dal 6 fino al 14%, inoltre se il tendine è lungo i fascicoli muscolari si allungano di meno. Un tendine più rigido è più prestante (assicura maggior potenza e velocità nei movimenti) ma è più soggetto agli infortuni.

    Qui sotto un riassunto di quanto detto finora.

    Conclusioni

    I tendini si adattano meno rapidamente dei muscoli agli stimoli allenanti, pertanto è sempre buona cosa ricordarsi che il tempo da dare all’organismo affinché esso recuperi e si adatti ai carichi di lavoro non è solo utile per il tessuto muscolare. Anche perché bisogna tenere a mente che spesso molti infortuni sono proprio di origine tendinea.

    Non si può non prendere in considerazione queste informazioni se si compila una scheda di allenamento o si lavora con degli atleti infortunati.

    Grazie per l’attenzione.


    Bibliografia

    1 Brumitt J. et al. – Current concepts of muscle and tendon adaptation to strength and conditioning (2015)
    2 Lieber R. L. – Skeletal Muscle Structure, Function, and Plasticity (2010)
    3 Woo S. L. et al. – The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons (1981)
    4 Kubo K. et al. – Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo (2002)
    5 Huxley A. F. – Muscle structure and theories of contraction (1957)
    6 Wood T. O. et al. – The effect of exercise and anabolic steroids on the mechanical properties and crimp morphology of the rat tendon (1988)
    7 Thom J. M. et al. – Passive elongation of muscle fascicles in human muscles with short and long tendons (2017)

  • Il (non) problema delle asimmetrie

    Il (non) problema delle asimmetrie

    Quella che segue è una traduzione ed adattamento di un articolo particolarmente interessante del chinesiologo e coach Dean Somerset.

    Buona lettura!

    Un concetto chiave

    Una delle cose più importanti che desidero che le persone si portino a casa è la seguente: ogni individuo ha una propria anatomia, punti di forza, punti deboli e obiettivi. Pertanto, l’approccio a certi esercizi potrebbe non essere quello riportato sui comuni libri di testo. La compilazione del programma di allenamento, la scelta degli esercizi e l’approccio a quest’ultimi può variare da soggetto a soggetto.

    Gran parte della ricerca sulla variazione anatomica può mostrare che alcune persone hanno strutture che possono facilitare e consentire movimenti di un certo tipo, mentre per altre sarebbe più facile abbattere un muro di mattoni col labbro superiore piuttosto che eseguire una accosciata molto profonda, indipendentemente dai lavori sulla mobilità articolare e tessuti molli. Le loro articolazioni non hanno la conformazione idonea per fare certe cose!

    E anche guardando più in profondità nella tana anatomica del bianconiglio, uno stesso atleta può avere differenze significative fra l’arto destro e sinistro, superiore o inferiore che sia, specialmente se vi sono state delle esperienze sportive importanti prima dell’adolescenza (si parla di sport dove un lato del corpo è più impegnato rispetto alla controparte).

    Nella pratica

    I giocatori di baseball per esempio hanno la testa dell’omero del loro braccio di lancio leggermente deformata, questa “caratteristica” ovviamente non si presenta nel braccio che solitamente non viene utilizzato per i lanci. Cambiando sport, la postura che generalmente tengono i praticanti di hockey nell’impugnare il bastone li porta ad avere un’estensione dell’anca maggiore da un lato rispetto all’altro.

    Sopra, le variazioni anatomiche dell’angolatura del collo del femore.

    Guardando le differenze nell’angolo del collo femorale della gamba sinistra e destra nei bambini con paralisi cerebrale, Davids et al. (2002) hanno dimostrato che in alcuni bambini questa differenza può essere piccola, di pochi gradi, e in altri molti più netta (fino a più di 25 gradi). Questa differenza strutturale potrebbe stare a indicare che mentre un piede extraruota (turns out) l’altro magari intraruota (turns in).

    Uno studio di Zalawadia et al. (2010) ha mostrato come anche soggetti senza problemi cerebrali possano avere significative differenze nell’antiversione fra l’arto inferiore destro e sinistro (20 o più gradi). Al riguardo qui sotto potete osservare qualche numero.

    Pertanto, se in uno stesso individuo vi sono asimmetrie rilevanti, ma comunque fisiologiche, ricercare a tutti i costi asimmetrie nel movimento potrebbe essere impossibile, nonché inutile.

    Se io voglio stare con la punta del piede destro extrarotata è perché ho una differenza strutturale a livello dell’anca (la destra è differente dalla sinistra). I muscoli dell’anca sono relativamente bilanciati quando le articolazioni su cui agiscono sono a riposo, se però provo a stare in una stance perfettamente simmetrica durante l’esecuzione di un qualche esercizio l’equilibrio viene alterato.

    Forzare la simmetria su una struttura asimmetrica non aiuta a correggere gli squilibri muscolari. Anzi, è probabile che li causi.

    Spesso, per esercizi come squat o stacco da terra si cerca una stance simmetrica, simile a quella mostrata nella figura qui sotto.

    Secondo quanto affermato fino ad ora, potrebbe non essere una scelta saggia. Almeno in teoria, persone con strutture asimmetriche dovrebbero trovarsi più a loro agio in stance fisiologiche e che quindi rispettano le loro asimmetrie corporee (figura sotto).

    Oppure per certe persone sarebbe naturale avere un piede un po’ dietro l’altro (fig. sotto).

    Altre persone ancora potrebbero avere dei benefici in stance tipiche di esercizi dove non si appoggia sempre l’intera superficie del piede a terra (affondi/piegate).

    Discostandoci un attimo dall’articolo originale, le asimmetrie, particolarmente presenti negli atleti più navigati, secondo i dati attualmente presenti in letteratura scientifica il più delle volte sono da considerarsi come un qualcosa di assolutamente normale. Testimoniano ciò fior fior di studi. Ne è un esempio quello di Haugen T. et al. (2018) i cui numeri chiave sono riportati nella tabella qui sotto.

    Parecchie asimmetrie sono comunissime negli sprinter d’élite e non rappresentano in alcun modo un ostacolo alla performance od un pericolo per la salute. “Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters” (immagine presa da qui).

    «Molti esperti di allenamento della forza, fisiologi e ricercatori hanno proposto che dovremmo cercare di ridurre l’asimmetria del movimento durante lo sport, al fine di migliorare le prestazioni e ridurre il rischio di infortuni. Tuttavia, come dimostra questo nuovo studio sugli sprinter di pista, l’asimmetria del movimento è estremamente comune durante lo sprint e non è correlata né alle prestazioni di sprint né al rischio di lesioni. È quasi come se l’asimmetria fosse una caratteristica del tutto naturale del movimento umano».

    Conclusioni

    Riguardo alle immagini dei piedi nel paragrafo precedente, qualcuna di quelle posizioni è sbagliata? No. Una posizione potrebbe essere completamente giusta per qualcuno, ma non funzionare affatto per qualcun altro. E va bene così. Non tutti abbiamo bisogno di fare le medesime cose, o muoverci allo stesso modo.

    Se pensiamo ad esempio alle visite oculistiche, è diffusissimo il fatto che le persone vedano bene da un occhio e meno bene dall’altro. Anche gli occhi, esteticamente identici, nelle persone sane non sono uguali, e lo stesso concetto è valido per le altre parti del corpo.

    Certi accorgimenti tecnici su gesti/esercizi sportivi potrebbero essere utilissimi per alcuni soggetti ed inutili per altri. Solo l’esperienza ed un occhio attento possono fare la differenza e capire quali esercizi e movimenti sono più adatti ad un individuo e quali meno. Distinguendo le asimmetrie fisiologiche – che sono la stragrande maggioranza – da quelle patologiche.

    Grazie per l’attenzione.


    Bibliografia

    Somerset D. – Symmetry Doesn’t Even Matter, And Probably Causes More Problems Than It Solves (2018)
    Davids J. R. et al. – Assessment of femoral anteversion in children with cerebral palsy: accuracy of the trochanteric prominence angle test (2002)
    Zalawadia A. et al. – Study Of Femoral Neck Anteversion Of Adult Dry Femora In Gujarat Region (2010)
    Haugen T. et al. – Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters (2018)

  • Integrazione di caffeina per gli sport da combattimento e le arti marziali

    Integrazione di caffeina per gli sport da combattimento e le arti marziali

    Come già accennato in passato (qui), la caffeina per tutta una serie di motivi risulta essere utile agli sportivi, compresi i praticanti di sport da combattimento e arti marziali. Ora, cercheremo di soffermarci sui suoi benefici per i fighters.

    Buona lettura!

    mma-1315923_640

    Cos’è la caffeina?

    La caffeina è una trimeltixantina, alcaloide naturale presente in alcune piante (caffè, cacao, matè, ecc.). Questa sostanza è una stimolante del sistema nervoso centrale (SNC) ed è  (altro…)

  • Caffeina per la performance e la salute: tutto quello che bisogna sapere

    Caffeina per la performance e la salute: tutto quello che bisogna sapere

    Caffeina, può esserci nulla di più (ab)usato? In questo articolo andremo a vedere i pro, i contro e le linee guida di utilizzo. Buona lettura!

    COFFEE

    Cenni di chimica e fisiologia sportiva

    La caffeina è una trimeltixantina, alcaloide naturale presente in alcune piante (caffè, cacao, matè, ecc.). Questa sostanza è una stimolante del sistema nervoso centrale (SNC) ed è largamente usata per contrastare stanchezza e sonnolenza. Essa agisce aumentando i livelli di adrenalina, noradrenalina e la frequenza cardiaca (fc). Le sue interazioni col SNC derivano dalla facilità con cui la caffeina, una volta assunta, attraversa la barriera emato-encefalica (BEE). Sui tessuti dell’organismo funziona da vasodilatatrice, eccetto su quello nervoso, dove risulta avere un effetto vasocostrittore.

    Coffein
    Formula chimica

    La sua digestione dentro al tratto gastrointestinale dura circa 45 minuti e, in condizioni normali, i suoi effetti possono rimanere stabile per 1 ora, per poi gradualmente scemare nell’arco di 3-4 ore. Questo però dipende molto da persona a persona (abitudini alimentari, assuefazione, ecc.). Ma riguardo all’assuefazione ne parleremo meglio più avanti.

    Nell’uso quotidiano, la caffeina stimola la concentrazione e l’attenzione delle persone, anche sedentarie, migliorando le funzioni cognitive [1]. Questo può essere molto utile anche negli sport di situazione (tattica) e non solo, se pensiamo all’incremento della capacità di reazione data sempre da questo stimolante [2].

    La sua assunzione, in acuto, aumenta i livelli di catecolamine plasmatiche: adrenalina e noradrenalina, le quali agiscono sul sistema di trasmissione adrenergico [20,21].

    La caffeina promuove il rilascio degli acidi grassi liberi nel sangue, i quali possono essere usati come combustibile, risparmiando in una certa misura il glicogeno muscolare.

    Oltre a quanto già detto, questo composto è utile per le attività di endurance (inibisce parzialmente il senso della fatica) [3,4,5,6] e, stimolando la lipolisi, favorisce il dimagrimento (riduce anche l’appetito). Per di più, attenua il dolore muscolare ad insorgenza ritardata (DOMS) [6].

    agujetas
    Dolore muscolare post allenamento ridotto dalla caffeina [6]

    La caffeina influenza anche l’EPOC (consumo di ossigeno post allenamento). Infatti si è visto che un dosaggio cronico di 6 mg di caffeina per kg di peso corporeo (circa 420 mg per un uomo di 70 kg), assunto prima dell’allenamento con i pesi, aumenta i livelli di EPOC e la spesa energetica del 15% [7].

    vo2
    Variazione del consumo di ossigeno (VO2) durante (destra) e post allenamento (sinistra) [7]

    Riguardo invece alla forza massimale e alla potenza, i dati sono contrastanti [8,9,10,11]. Volendo provare a dare un giudizio, generale sulla questione, possiamo affermare che, qualora vi siano dei benefici, questi non sono particolarmente rilevanti.

    Tuttavia, quelli elencati fino ad ora non sono che una piccola parte dei processi messi in atto da questo stimolante (figura sotto).

    Caffè
    Gli innumerevoli effetti della caffeina secondo Sökmen B. e colleghi [12]

    Per evitare l’assuefazione cronica, bisogna ricorrere a dei periodi di stop (wash out). Un rapporto di assunzione-scarico molto utilizzato, espresso in settimane, è di 3:1 o 4:1, con il periodo di massima ricezione (teorica) alla sostanza che si trova in corrispondenza della/e gara/e. Teniamo presente che sui “principianti” la caffeina inizia a manifestare i suoi effetti dopo circa 30 minuti, è importante ciclizzarla perché altrimenti, oltre a perdere di efficacia, verrebbero ritardate le sue tempistiche di azione.

    La caffeina viene normalmente espulsa tramite l’urina. Tra l’altro, essa possiede una funzione diuretica [13].

    Antagonismo con la creatina

    Più di 20 anni fa, un celebre studio di Vandenberghe e colleghi [14] notò, quasi per caso, un certo antagonismo fra la caffeina e la creatina. Lo studio tuttavia presentava grossi limiti (breve durata, un solo test per misurare la variazione di performance, un periodo di scarico troppo breve, un campione poco ampio, dosi di caffeina forse eccessive). Negli anni a seguire, sono state pubblicate una miriade di ricerche scientifiche che hanno smentito questo antagonismo [15,16,17,18,19]. Il fatto che molte di esse abbiano usato protocolli di assunzione-scarico differenti dallo studio di Vandenberghe citato ad inizio paragrafo, non esclude del tutto che fare un carico di creatina a pochi giorni da una competizione (20-25 grammi/dì per 4-5 giorni di fila), possa annullare gli effetti positivi della caffeina, o viceversa. Questo però solamente in acuto.

    Molte aziende producono e vendono integratori che contengono entrambe queste sostanze
    Doping?

    No, potete stare tranquille. Anche se assunta in capsule la caffeina, secondo il COI (Comitato Olimpico Internazionale) e la WADA (World Anti-Doping Agency), non è considerata una sostanza dopante. Lo era fino al 2007, poi le normative sono cambiate. Ne avevamo parlato qui un po’ di mesi fa.

    Dosaggio ed assunzione

    Prima di passare alle capsule di caffeina (generalmente da 200 mg), è consigliabile abituare piano piano il nostro corpo all’assunzione di questa sostanza in dosi minori (basta una tazzina di caffè), in modo da evitare possibili effetti collaterali (70-120mg di caffeina per ogni tazzina di caffè).  É consigliato non superare i 350-400mg al giorno di caffeina, anche se le persone completamente assuefatte possono reggere dosaggi superiori.

    Un piano di assunzione per “principianti” potrebbe essere il seguente:

    Week 1: un paio di caffè al giorno
    Week 2: una compressa da 200 mg pre-workout e 1-2 caffè nei giorni off
    Week 3: una compressa da 200 mg pre-workout e 1-2 caffè nei giorni off
    Week 4: una compressa da 200 mg pre-workout e 1-2 caffè nei giorni off
    Week 5: wash out (scarico completo)
    Effetti collaterali

    Le controindicazioni principali sono: nervosismo, febbre, diuresi, tachicardia e ipotensione. Comunque nulla di preoccupante, se si segue l’opportuna posologia e se non si hanno problemi cardiaci o renali.

    In ogni caso, è consigliabile consultare il proprio medico curante.

    Conclusioni

    La caffeina è una delle sostanze più studiate di sempre e anche delle più efficaci, non è un caso che in passato fosse considerata doping. Per un ampio numero di sportivi, questo composto è utile. Può servire ai culturisti, pur non essendo indispensabile, o essere molto importante per i maratoneti. Tutto dipende ovviamente dal contesto.

    Grazie per l’attenzione e buon allenamento!


    L’autore non risponde degli eventuali danni derivati dalle informazioni ivi contenute


    oc

    L’articolo ti è piaciuto? Seguici su Facebook e Instagram!


    Bibliografia

    Sacchi N. – Farmaci e doping nello sport (2014)

    Cravanzola E. – Sostanze eccitanti per il dimagrimento e la performance sportiva (2017)

    Temple J. L. et al. – The Safety of Ingested Caffeine: A Comprehensive Review (2017)

    Muñoz M. – Efecto de la cafeína sobre las agujetas (2013)

    [1] Wyatt J. K. et al. – Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness (2004)

    [2] Santos et al. – Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo (2014)

    [3] Bell G. D. et al. – Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers (2002)

    [4] Doherty M. – Caffeine lowers perceptual response and increases power output during high-intensity cycling (2004)

    [5] Graham T. E. et al. – Performance and metabolic responses to a high caffeine dose during prolonged exercise (1991)

    [6] Hurley C. F. et al. – The effect of caffeine ingestion on delayed onset muscle soreness (2013)

    [7] Astorino A. T. et al. – Effect of acute caffeine ingestion on EPOC after intense resistance training (2011)

    [8] Bond V. et al. – Caffeine ingestion and isokinetic strength (1986)

    [9] Williams J. et al. – Caffeine, Maximal Power Output, and Fatigue (1988)

    [10] Astorino A. T. et al – Effects of caffeine ingestion on one repetition maximum muscular strength (2008)

    [11] Wiles J. et al. – The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial (2006)

    [12] Sökmen B. et al – Caffeine use in sports: considerations for the athlete (2008)

    [13] Robertson M. D. et al. – Effects of Caffeine on Plasma Renin Activity, Catecholamines and Blood Pressure (1978)

    [14] Vandenberghe K. et al. – Caffeine counteracts the ergogenic action of muscle creatine loading (1996)

    [15] Doherty M. et al. – Caffeine is ergogenic after supplementation of oral creatine monohydrate (2002)

    [16] Spradley B. D. et al. – Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance (2012)

    [17] Lee C. L. et al. – Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance (2011)

    [18] Vanakoski J. et al. – Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations (1998)

    [19] Fukuda D. H. – The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans (2010)

    [20] Anderson D. E. et al. – Effects of caffeine on the metabolic and catecholamine responses to exercise in 5 and 28 degrees C (1994)

    [21] Norager C. G. et al. – Metabolic effects of caffeine ingestion and physical work in 75-year old citizens. A randomized, double-blind, placebo-controlled, cross-over study (2006)

  • Alcol e sport: dalla composizione corporea alla performance

    Alcol e sport: dalla composizione corporea alla performance

    L’alcol fa ingrassare? Contribuisce a formare quell’odiosa pancetta, non facendo così emergere la tanto agognata tartaruga? Influisce sulle prestazioni fisiche?

    Cerchiamo di scoprirlo insieme!

    beer

    Un po’ di nozioni generali

    Con la parola alcol si intende l’alcol etilico, la cui formula bruta è C2H5OH. Più in generale, si usa il termine alcol quando si accenna ad una sostanza che presenta un gruppo idrossilico (OH).

    L’alcol, anche se si  perfettamente sobri, è presente nel sangue (altro…)

  • Test atletici per sport da combattimento

    Test atletici per sport da combattimento

    AJPrima di ogni training camp, sia che si tratti di professionismo o di semplice dilettantismo, è buona cosa far effettuare agli atleti dei test specifici, per valutare lo stato di forma e capire quali sono i punti deboli e quali quelli di forza. Durante l’imminente macrociclo di allenamento, si andrà ovviamente a lavorare di più sui primi e un po’ meno sui secondi. Per chi fosse poco ferrato in materia è consigliabile fare prima un breve ripasso sulle capacità condizionali e coordinative (qui) e sui sistemi energetici (qui).

    Questo e molto altro ancora nel libro sullo strength and conditioning per sport da combattimento che è attualmente in fase di scrittura.

    Buona lettura!

    Capacità organico-muscolari e coordinative da testare
    • Forza massimale
    • Forza esplosiva (o potenza)
    • Forza resistente
    • Resistenza
    • Velocità/rapidità
    • Mobilità articolare
    • Stabilità ginocchio
    Test atletici e relativi valori

    Forza massimale: panca piana; squat; stacco da terra; trazioni zavorrate.

    Ovviamente è di fondamentale importanza la tecnica. Possedere il corretto schema motorio consente di reclutare i giusti muscoli (tenendo comunque presente che si tratta di esercizi multiarticolari) e di limitare il rischio infortunio.

    Panca piana: 1,25-1,5x Bw; Squat: 1,5-2xBw

    Stacco: 1,75-2xBw; Trazioni zavorrate: 0,25-0,5xBw*

    *le cifre rappresentano i carichi massimali che gli atleti riescono a sollevare (1RM) riferiti al proprio peso corporeo (Bw, bodyweight). Riguardo alle trazioni, il peso è il sovraccarico legato alla vita tramite la cintura. Ad esempio, un atleta che pesa 100 kg (x0,25 o x0,5) deve riuscire ad eseguire una trazione alla sbarra completa con una zavorra di almeno 25 kg.

    Forza esplosiva: push press; vertical jump; broad jump; plyo box jump up.

    A differenza degli esercizi di forza massimale, qui entrano in gioco veramente troppi fattori soggettivi. E’ quindi molto difficile stabilire una scala di valori numerici per i vari esercizi. Eccetto che per il push press: 0,75-1xBw.

    Gli esercizi esplosivi riguardano i piani di movimento tipici degli sport da combattimento (frontale e trasversale). Le unità di misura per tutti e tre i salti sono, ovviamente, in centimetri.

    Forza resistente: push ups max reps; pull ups max reps, plank max time.

    Qui c’è poco da spiegare, un esercizio di spinta, uno di trazione ed uno di isometria del core. Massimo numero di piegamenti sulle braccia consecutivi, massimo numero di trazioni prone (pull ups) ed infine un ponte (plank) mantenuto per più tempo possibile (senza perdere la contrazione addominale).

    Resistenza: test di Conconi (individuazione soglia anaerobica) e test di Cooper; è necessario per prima cosa prendere il battito cardiaco a riposo.

    TEST

    Il test di Conconi può essere effettuato in laboratorio (su cicloergometro), su tapis roulant o cyclette, in alternativa anche su pista di atletica [1]. Quest’ultima opzione è la meno attendibile e infatti sta cadendo un po’ in disuso. Il test di Cooper va invece fatto per avere un’idea generale della resistenza fisica dell’atleta. Consiste nel correre per dodici minuti di fila, cercando di coprire la maggior distanza possibile [2]. Sui tapis roulant più moderni, si possono eseguire entrambi questi test, insieme a molti altri (foto a sinistra).

    Di seguito, i risultati ritenuti più o meno soddisfacenti (da molto bene a malissimo), espressi in metri, rapportati alla varie fasce di età (si parla ovviamente di uomini attivi e perfettamente sani). Ulteriori approfondimenti, compresi i valori validi per la popolazione femminile, li potete trovare qui.

    valutazioni

    Velocità: sprint sui 40 metri e test delle due linee.

    Indicativamente dei tempi ritenuti soddisfacenti per gli sprint sui 40 m sono:

    Uomini → mediocre: 5.20-5.40″; buono: 5.19-4.90″; ottimo: <4.90″.

    Donne → mediocre: 5.90-5.65″; buono: 5.64-5.35″; ottimo: <5.35.

    I valori si riferiscono ad atleti sani con un’età compresa fra 18-35 anni.

    40m

    Il secondo test consiste invece nel tracciare due linee parallele, distanti circa 40 cm (immagine riportata sotto) e nell’andare con i piedi “avanti e indietro” per il maggior numero di volte possibile nel tempo concesso (dieci secondi).

    40 cm
    Una singola ripetizione dell’esercizio (non ci sono spostamenti laterali)

    Si parte con entrambi i piedi dietro ad una linea (B) e si portano i piedi oltre la linea opposta (A) uno per volta, alla massima velocità possibile, poi alla stessa maniera si riportano i piedi dietro alla line di partenza (B), e così via, senza interruzioni, fino allo scadere del tempo (10″). Nella figura sopra, tutti i passaggi (1-5) corrispondono ad una singola ripetizione dell’esercizio.

    Mobilità articolare: sit and reach e test di mobilità delle spalle (sollevamento bracia con bacino retroverso e schiena appoggiata ad un muro).

    Il sit and reach test consiste nel ricercare la massima estensione della catena muscolare posteriore da seduti, inclinando il busto in avanti (figura sotto). Le punte delle dita devono cercar di toccare la porzione della tavola più distante possibile. Si salverà il risultato facendo un segno proprio sulla superficie della tavola posizionata poco sopra i piedi ed annotando la distanza raggiunta. A questo link potete trovare un video pratico del test.

    Invece nell’altro test, dopo un breve riscaldamento, l’atleta si posiziona di spalle ad un muro, con la schiena perfettamente aderente alla parete in ogni suo punto (zona lombare compresa).

    Cattura

    Successivamente deve sollevare gli arti superiori provando a toccare il muro alle proprie spalle, mantenendo ovviamente l’articolazione del gomito bloccata. Si misura con un metro (o righello) la distanza delle mani dalla parete.

    Con le suddette regole, la maggior parte delle persone non è in grado di arrivare a toccare la parete. Quando la mobilità richiesta in questa prova viene raggiunta, si passa ad esercizi più impegnativi, di cui magari parleremo in futuri articoli.

    Stabilità ginocchio: lateral and medial single leg hop series (video sotto). Con questo esercizio si valuta la stabilità dell’articolazione del ginocchio, una delle più soggette agli infortuni. Nel caso venissero notate delle problematiche (valgismo, varismo, scarso equilibrio, errato appoggio monopodalico), queste dovranno essere corrette, se necessario con la supervisione di un fisioterapista od un fisiatra.

    Conclusioni

    Quelli di cui abbiamo appena parlato sono i principali test che un preparatore atletico serio dovrebbe far eseguire ai propri atleti praticanti SdC. Ovviamente nulla vieta di sostituirne alcuni con delle varianti, ci sono anche vari fattori che entrano in gioco (disponibilità delle strutture, caratteristiche individuali dei fighters, infortuni pregressi, tipo di programmazione, tempo a disposizione, eccetera). I test vanno eseguiti all’inizio di ogni training camp e vanno poi ripetuti all’inizio del training camp successivo, confrontando i risultati.

    Senza numeri sono tutti atti di fede

    Detto ciò, non resta che salutarci ed augurare a tutti un buon allenamento!


    oc
    Bibliografia

    [1] Conconi F. et al. – Determination of the anaerobic threshold by a noninvasive field test in runners (1982)

    [2] Cooper H. K. et al. – A means of assessing maximal oxygen intake. Correlation between field and treadmill testing (1968)

    Landow L. – Ultimate conditioning for martial arts (Human Kinetics 1a Ediz., 2016)

    Riccaldi A. – The chronicles of Legionarius: la preparazione atletica di Alessio Sakara (2013)

    Bertuzzi R. – Energy System Contributions During Incremental Exercise Test (2013)

    Cravanzola E. – Allenarsi in base alla frequenza cardiaca (2016)

    Travis N. Triplett – Assessing Speed and Agility Related to Sport Performance (2012)

  • Hip thrust: una valida alterativa allo squat nella preparazione atletica?

    Hip thrust: una valida alterativa allo squat nella preparazione atletica?

    L’hip thrust è un’esercizio che interessa principalmente gli arti inferiori, tornato alla ribalta negli ultimi anni grazie ad alcuni coach e studiosi d’oltreoceano, come per esempio Bret Contreras.

    1ohda7

    Oltre alla mera ipertrofia, l’hip thrust può trovare il suo spazio anche all’interno di una preparazione atletica finalizzata al miglioramento delle capacità condizionali. In questo  (altro…)