Tag: sprint

  • Le asimmetrie nella corsa veloce

    Le asimmetrie nella corsa veloce

    Prosegue la serie di articoli sulle asimmetrie, ora è il momento di parlare di quelle che colpiscono gli sprinter.

    Quanto segue è un breve estratto di una tesi compilativa elaborata dal sottoscritto ed esposta presso l’Università degli Studi di Torino (Unito) per la laurea triennale in Scienze Motorie e Sportive. Buona lettura!

    Fisiologico o patologico?

    La questione asimmetrie sì, asimmetrie no, tutt’ora non è chiara in letteratura scientifica. Come fatto notare da una critical review comparsa nel 2018 sul Journal of Strength and Conditioning Research1, non possiamo dire con sicurezza se l’asimmetria di forza o esplosività fra i due arti inferiori influisca o meno sulle prestazioni degli sprinter. I dati sono contrastanti e certi studi sono metodologicamente mal svolti. Sannicandro e colleghi2 hanno osservato una influenza negativa delle asimmetrie negli sprint particolarmente brevi (entro i 20 m), Lockie et al.3 il contrario. Parecchi altri studi non hanno rilevato legami di alcun tipo fra eventuali asimmetrie e prestazioni sportive di corsa veloce o infortuni 4,5,6,7,8.

    Osservando il grafico riportato sopra, possiamo notare come importanti asimmetrie siano molto comuni negli sprinter di alto livello (Haugen T. et al., 2018; infografica a cura della pagina Strength and Conditioning Research).

    «Molti esperti di allenamento della forza, fisiologi e ricercatori hanno proposto che dovremmo cercare di ridurre l’asimmetria del movimento durante lo sport, al fine di migliorare le prestazioni e ridurre il rischio di infortuni. Tuttavia, come dimostra questo nuovo studio sugli sprinter di pista, l’asimmetria del movimento è estremamente comune durante lo sprint e non è correlata né alle prestazioni di sprint né al rischio di lesioni. È quasi come se l’asimmetria fosse una caratteristica del tutto naturale del movimento umano»6.

    Conclusioni

    Quindi, con le prove a nostra disposizione possiamo affermare che le asimmetrie nello sprint sono fisiologiche e non paiono essere dannose per gli atleti. Senza però avere la presunzione che questa sia la “verità definitiva”, dato che c’è ancora molto da indagare e da scoprire.

    Grazie per l’attenzione.


    Bibliografia

    1 Maloney S. J. – The relationship between asymmetry and athletic performance: A critical review (2018)
    2 Sannicandro I. et al. – Correlation between functional asymmetry of professional soccer players and sprint (2011)
    3 Lockie R. G. et al. – The relationship between bilateral differences of knee flexor and extensor isokinetic strength and multi-directional speed (2012)
    4 Exell T. et al. – Strength and performance asymmetry during maximal velocity sprint running (2017)
    5 Meyers R. W et al. – Asymmetry During Maximal Sprint Performance in 11- to 16-Year-Old Boys (2017)
    6 Haugen T. et al. – Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters (2018
    7 Lockie R. G. et al. – Relationship between unilateral jumping ability and
    asymmetry on multidirectional speed in team-sport athletes
    (2014)
    8 Lockie R. G. et al. – Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration (2017)

  • Preparazione atletica per i giocatori di basket diversamente abili

    Preparazione atletica per i giocatori di basket diversamente abili

    sports-812845_1920

    E’ ormai da parecchie settimane che mi occupo della preparazione atletica della squadra di basket del progetto Pegaso di Asti. Quando mi hanno fatto questa proposta ho accettato senza indugiare più di tanto, questo anche per mettere in pratica gli insegnamenti della materia “APA/AFA” che ho avuto al secondo anno universitario di Scienze Motorie.

    In questo articolo parlerò della preparazione atletica che, con l’aiuto dei due allenatori, ho fatto seguire ai ragazzi, dando qualche indicazione generale.

    Attività fisica adattata

    AFA = “…programmi di esercizio non sanitari, svolti in gruppo, appositamente disegnati per individui affetti da malattie temporanee/o croniche finalizzati anche alla modificazione dello stile di vita per la prevenzione secondaria e terziaria della disabilità” (Macchi e Benvenuti, 2012).

    Capture.JPG

    Dopo aver fatto una breve ed infruttuosa ricerca sul web, ho deciso di analizzare un po’ di cose e di buttare giù una bozza di macrociclo.

    Teoria dell’allenamento

    Struttura e materiale a disposizione: Palestra scolastica dotata di campo da basket ( x m), 2 spalliere, dei materassi spessi circa 40 cm, una ventina di cinesini di diversi colori, due coni alti 30 cm circa e, ovviamente, un discreto numero di palloni basket.

    Squadra: 19 giocatori in totale (di cui solo una donna), con un’età che va dai 18 ai 40 anni. Il numero medio di giocatori per allenamento è intorno ai 15. Di tutto il gruppo, 2 persone sono affette dalla sindrome di down, ciò, nella pratica, le porta a distrarsi spesso, non capendo quasi mai il corretto svolgimento degli esercizi e concentrandosi unicamente sull’atto finale di una qualsiasi azione di gioco: tirare a canestro! Altri due soggetti sono gravemente in sovrappeso (e questo condiziona moltissimo la loro capacità di muoversi) e

    Allenamenti settimanali: solamente 1 allenamento a settimana della durata di un’ora.

    Calendario gare: Week-end interi dedicati alle gare ogni 3-4 mesi circa.

    Risultano quindi chiare un po’ di cose: il tempo è quello che é, e la preparazione atletica non deve rosicarne troppo all’allenamento della tecnica (e anche della tattica). Per il poco materiale a disposizione e problemi articolari e coordinativi di vario genere, gli atleti non avranno modo di allenare la forza massimale (non ci sarebbe neanche il tempo necessario per provare a lavorare sugli schemi motori). Inoltre, un certo numero di praticanti (6) è completamente impossibilitato ad eseguire come si deve ogni esercizio, a dirla tutta, oltre a camminare (a fatica) e muovere le braccia può fare poco, questi giocatori avranno sempre delle aggevolazioni sulle esercitazioni (gli verranno quindi fatte eseguire delle varianti meno complicate). Anche se quest’ultime porteranno magari ad un diverso utilizzo dei sistemi energetici e/o capacità condizionali non importa: ciò che conta è dar la possibilità a tutti di muoversi, fare sport, divertirsi con gli altri!

    Struttura allenamenti

    Lontano dalle gare: 30-45′ su 1h saranno dedicati alla preparazione atletica (riscaldamento incluso), i restanti 15-30′ a lavori incentrati sulla tecnica e sulla tattica.

    In prossimità delle gare: 20-30′ circa di preparazione atletica (riscaldamento incluso) e 30-40′ di allenamento tecnico-tattico.

    Cosa bisogna allenare di preciso?

    Forza

    • Massimale
    • Esplosivo-elastica
    • Resistente

    Velocità / rapidità

    Resistenza

    • Aerobica
    • Anaerobica (alla potenza e alla velocità) 

    In più: agilità, rinforzo del core, stretching ed equilibrio 

    Linee guida pratiche

    Forza massimale: dato il basso livello atletico generale sono più che sufficienti dei piegamenti sulle braccia (push ups). Da 5-6 ripetizioni fino a 10, serie comprese fra le 3 e le 6 per ogni esercizio. I ragazzi meno forti possono eseguirli con le ginocchia appoggiate a terra, in modo da rendere l’esercizio meno intenso.

    Per gli arti inferiori invece, è sufficiente l’esercizio hip thrust a corpo libero (bipodalico o monopodalico).

     

     

    Forza esplosivo-elastica: piccoli balzi standard e balzi con contromovimento, sia bipodalici che monopodalici (poche ripetizioni ed un buon recupero, possibilmente attivo).

    single-leg-box-jump
    Balzo monopodalico su un rialzo

    Per ottenere risultati soddisfacenti non è necessario un gran volume di allenamento. Schemi di allenamento come dei 3×5, 3×6, 3×8, 4×6* possono essere più che sufficienti. *serie x ripetizioni.

    Forza resistente: esercitazioni a intensità media e medio-bassa. Sforzi continui e prolungati per incrementare le sue varie espressioni:

    • F. resistente su base aerobica: almeno 2′ di lavoro continuo
    • F. resistente su base anaerobica: (potenza lattacida): 40-90″ di lavoro cont.
    • F. resistente su base anaerobica: (capacità lattacida): 90-120″ di lavoro cont.

    Il recupero completo è previsto solamente per la potenza lattacida. Al riguardo potrebbe essere utile un ripasso sui sistemi energetici (qui) e sulla frequenza cardiaca (qui).

    002 (2)

    Con poco materiale, tempo a disposizione e tenendo anche conto dello scarso bagaglio motorio dei più, è quasi impossibile andare a lavorare su tutte le sfaccettature della forza resistente. Senza abbatterci, possiamo comunque mettere nero su bianco degli esempi di esercitazioni pratiche.

    Un esercizio su tutti è quello di camminare, magari palleggiando, con alle spalle un compagno che oppone resistenza tirando all’indietro il partner che cammina (dopo averlo cinto per i fianchi), rendendo più impegnativa la camminata. Le tempistiche di lavoro sono quelle elencate prima: >2′ (FR aerobica), 40-90″ (FR anaerobica, potenza lattacida), 90-120″ (FR anaerobica, capacita lattacida).

    Velocità e capacità di reazione: esercizi per lo sviluppo della rapidità nei piccoli spostamenti con e senza palla (sprint con deviazioni, skip e movimento degli arti inferiori su speed ladder, esercitazioni che alla fine portano a tirare a canestro). Sprint su distanze comprese fra i 10 ed i 40 metri. Giochi di gruppo in grado di stimolare la prontezza dei riflessi, simulazione di azioni di gioco, eccetera.

    Esempio pratico

     

    Resistenza:

    • Aerobica: non c’è il tempo materiale per svilupparla con la classica corsa a Vo2max (potenza aerobica) od il fondo (capacità aerobica), tenendo anche conto dei problemi motori più o meno gravi che impedirebbero ad un cospicuo numero di ragazzi di correre bene per tot minuti. Le modalità di gioco (tempi, elevato numero dei cambi, eccetera), fanno sì che il sistema aerobico non debba essere troppo efficiente). Fare sport per un’ora o più consente di avere già una discreta capacità aerobica di base. In questo specifico caso è sufficiente quella, pertanto l’allenamento del sistema aerobico sarà indiretto.
    • Anaerobica: brevi scatti con recuperi incompleti per allenare la resistenza alla rapidità. Balzi, slanci e lanci della pallone. Il tutto con recuperi incompleti.

    Agilità: dribbling e movimenti di vario genere (cambi di direzione, skip, rotazioni del corpo di 90-180-360° gradi attorno all’asse longitudinale) fra i coni, cinesini o su speed ladder. Un esempio lo trovate qui sotto ed a questo link.

     

     

    Rinforzo core e stretching: esercizi di vario genere per il rinforzo dell’addome e della zona lombare (crunch, sit up, plank, estensioni lombari da sdraiati). Inoltre, per mantenere una buona flessibilità è consigliabile eseguire degli esercizi di stretching alla fine dell’allenamento. Non è casuale l’utilizzo della parola “mantenere”, infatti per incrementare la flessibilità servono almeno 2-3 sedute specifiche a settimana. E’ pertanto buona cosa, consigliare alla squadra di eseguire dello stretching, almeno gli esercizi più semplici, anche in altri giorni della settimana.

    Equilibrio e propriocezione: camminata lenta o piccoli balzi (mono e bipodalici) su superfici instabili (materassine), ricezione e lanci della palla stando in equilibrio su una gamba sola.

    Macrociclo di allenamento (esempio pratico)

    Ipotizzando che gli allenamenti inizino la seconda settimana di settembre e le prime gare siano a metà dicembre. Durata macrociclo: 15 settimane, 1 allenamento a settimana della durata media di 1 ora, 4 allenamenti mensili.

    Settembre (30-40' di preparazione atletica)
    Allenamento n.1 - FM, FE, EQ, ABS e ST
    All.2 - FM, FE, AG, EQ, ABS e ST
    All.3 - FM, FE, VEL, EQ, ABS, e ST
    All.4 - FM, FE, VEL, ABS e ST
    
    Ottobre (30')
    All.1 -FM, FE, VEL, AG, EQ e ST
    All.2 - FM, FE, VEL, AG, EQ e ST
    All.3 - FM, FE, VEL, AG, EQ e ST
    All.4 - FE, FR, VEL, AG, EQ e ST
    
    Novembre (20-30')
    All.1 - FE, FR, VEL, RP, AG e ST
    All.2 - FE, FR, VEL, RP e ST
    All.3 - FR, RV, RP, ABS e ST
    All.4 - RV, RP, EQ e ST
    
    Dicembre (15-20')
    All.1 - RV, AG e ST
    All.2 → competizione!
    
    Legenda: FM = forza massimale; FE = forza esplosiva; FR = forza resistente; EQ = equilibrio; ABS = rinforzo core; ST = stretching; AG = agilità; RP = resistenza alla potenza; RV = resistenza alla velocità.

    Ovviamente questo è solo un esempio, i metodi di periodizzazione sono molteplici, tutto va contestualizzato.

    Altre indicazioni generali
    • Ricorrere ad esercizi/giochi di gruppo che coinvolgano e facciano divertire i ragazzi il più possibile, in modo da evitar di far calare la loro soglia di attenzione (già bassa).
    • Dare poche indicazioni e semplici istruzioni alla squadra, in modo da non mandare i ragazzi in confusione.
    • Far sì che in ogni allenamento siano trattate più capacità condizionali e coordinative possibili, bisogna ottimizzare il poco tempo a disposizione.
    • Essere armati di una dose enorme di pazienza.
    • Non essere troppo rigidi ma neanche perdere il controllo della situazione.

     

    Buon allenamento!

    .

    oc

    .

    L’articolo ti è piaciuto? Supporta il mio lavoro!

    .

    Logo Patreon

    .

    Referenze e approfondimenti

    Cravanzola E. – Capacità condizionali e coordinative: iniziamo a conoscerle (2015)

    Dawes J. and Roozen M. – Developing Agility and Quickness (2012)

  • Creatina: guida all’integrazione

    Creatina: guida all’integrazione

    La creatina è indubbiamente uno degli integratori più diffusi ed utilizzati nell’ambiente della palestra. In questo articolo, dal titolo sicuramente provocativo, cercheremo di parlare di tutto ciò che riguarda questo composto (fisiologia, materiale scientifico, rapporto con altri integratori, dosaggio, eccetera). Buona lettura!

    chest-exercises-1

    Cenni di chimica e fisiologia

    La creatina è un composto ergogenico che nel nostro corpo si trova per un 40% in forma libera, per un 50% in forma fosforilata e per il restante 10% è contenuta nel fegato, ove è sintetizzata da due aminoacidi ed un coenzima, reni e cervello. Il nostro organismo ne produce circa 1 grammo al giorno. La creatina viene utilizzata principalmente per la sintesi dell’ATP (adenosintrifosfato) del sistema anaerobico alattacido.

    E’ presente nel cibo (manzo, latte, tonno ecc.) ma in quantità assai ridotte che mai e poi mai potrebbero sostituire una supplementazione esterna.

    La maggior parte degli studi attualmente presenti in letteratura scientifica associa l’assunzione di creatina, cronica e non, a miglioramenti della performance anaerobica (forza e potenza) [1,2,3,4]. Anche l’ipertrofia muscolare è influenzata positivamente da questo composto [5,6].

    Performance
    Effetti della creatina su sforzi brevi (grafico di sinistra, ≤ 30″) e sforzi un po’ più duraturi (grafico a sinistra, 30-150″). Oltre i 150″ di sforzo continuo, i miglioramenti sono meno netti. Legenda: AE = arm ergometry; BE = cicloergometro (cyclette); IK = forza isocinetica di torsione; IM = forza isometrica; IT = forza isotonica; JP = salto; RN = sprint (corsa); SK = pattinaggio veloce; SW = nuoto; KY = kayaking. Branch J. D. (2003) [21].

    Come per la questione EPO di cui avevamo già parlato qui, su un certo numero di soggetti la creatina non ha alcun effetto (soggetti “non-responder”), i quali rappresentano indicativamente il 20-30% della popolazione [7]. Uno studio del 2004 sostiene che i soggetti “responder” tendano ad avere dei livelli di creatina intramuscolare abbastanza bassi e per questa ragione, una volta assunta la creatina con gli integratori, i livelli di quest’ultima cambino significativamente (in positivo). I ricercatori del medesimo studio, ritengono inoltre che i “responder” abbiano mediamente più massa magra e fibre muscolari rapide (tipo II) [8].

    Oltre a quanto già detto, come riportano molti autori, la creatina accelera la supercompensazione del glicogeno se assunta in concomitanza con dei carboidrati, i quali a loro volta danno una mano nello stoccaggio della creatina nei muscoli [22,23,24].

    Durante il primo mese di assunzione si ha sempre un aumento di peso (circa 1-2 kg) derivante dalla forte ritenzione idrica che causa questo composto, ciò in sport con classi di peso può essere un problema. Il corpo si libera di questa acqua intracellulare 2-3 settimane dopo lo stop della assunzione di creatina. Uno scarico, o stop definitivo, può aver senso solo ed esclusivamente per un discorso di peso, utilità per il proprio sport, costi (la creatina non la regalano) e feedback dell’atleta, dato che essa non dà assuefazione.

    Presunto antagonismo con la caffeina

    Più di 20 anni fa, un celebre studio di Vandenberghe e colleghi [9] notò, quasi per caso, un certo antagonismo fra la creatina e la caffeina. Lo studio tuttavia presentava grossi limiti (breve durata, un solo test per misurare la variazione di performance, un periodo di scarico troppo breve, un campione poco ampio, dosi di caffeina forse eccessive). Negli anni a seguire, sono state pubblicate una miriade di ricerche scientifiche che hanno smentito questo antagonismo [10,11,12,13,14]. Il fatto che molte di esse abbiano usato protocolli di assunzione-scarico differenti dallo studio di Vandenberghe citato ad inizio paragrafo, non esclude del tutto che fare un carico di creatina a pochi giorni da una competizione (20-25 grammi/dì per 4-5 giorni di fila), possa annullare gli effetti positivi della caffeina, o viceversa. Questo però solamente in acuto.

    Campi di utilizzo

    Bodybuilding e fitness, powerlifting, weightlifting, atletica leggera (nonostante l’aumento di peso scaturito dalla sostanza). E’ inoltre utilizzata nelle pratiche di taglio del peso, infatti, dopo la disidratazione, abbinata a molta acqua, aiuta a richiamare liquidi a livello intracellulare.

    Tipologie

    Esistono vari tipi di creatina, dalla classica monoidrato alla etil estere o alcalina. Dietro a tutte queste suddivisioni, purtroppo, c’è molto marketing. La più conveniente in termini di costi-benefici è la monoidrato (creatina combinata con una molecola di acqua). Le altre forme, quasi tutte più costose di quest’ultima, non apportano chissà che effetti superiori, anzi, teoricamente la creatina etil estere (CEE) è anche peggiore della monoidrato. Perché? Perché è stato visto che si degrada subito, convertendosi quasi immediatamente in creatinina (suo primario prodotto metabolico), risultando quindi inefficace per l’incremento delle prestazioni e della massa muscolare [15,16]. “L’integrazione con creatina etil estere ha mostrato un grande aumento nel siero (sanguigno, NdR) dei livelli di creatinina senza aumentare in modo significativo i livelli di creatina totale nei muscoli. Questo può voler dire che una larga porzione di creatina etil estere è stata degradata all’interno del tratto gastrointestinale dopo l’ingestione.
    Inoltre sembra che l’assorbimento di creatina etil estere da parte dei muscoli non è abbastanza imponente da aumentare i livelli di creatina nei muscoli stessi senza prima una significativa degradazione di creatina in creatinina” [17].

    Creatina
    Da sinistra a destra: livelli sierici di creatina, creatinina e contenuto di creatina nei muscoli. PLA = placebo; CRT = creatina monoidrato; CEE: creatina etil estere (Spilane M. et al, 2009)

    Discorso simile per la creatina alcalina, la quale teoricamente dovrebbe migliorare l’assorbimento della creatina grazie ad una riduzione della conversione in creatinina, la cosa però è stata smentita da uno studio di qualche anno fa [18]. O la citrato, che ha dimostrato buoni risultati ma non è mai stata confrontata con la monoidrato.

    Per di più, una recentissima review di Andres S. e colleghi, oltre ad aver ribadito la sicurezza della monoidrato, ha sconsigliato la creatina orotata e gluconato perché apparentemente poco sicure per la salute [25].

    In definitiva, marketing a parte, la monoidrato sembra a tutti gli effetti essere la migliore forma di creatina attualmente in commercio (e costa anche meno…).

    Effetti collaterali

    I problemi che si potrebbero manifestare con l’uso, e abuso, di creatina sono principalmente due: disturbi gastrointestinali e diarrea.

    Nonostante in passato sia stato fatto un po’ di terrorismo psicologico sulla questione creatina-danni renali. La scienza ha smentito questi ipotetici problemi ai reni derivanti dall’assunzione di creatina in soggetti sani [19].

    Dosaggio

    Se ne consiglia un’assunzione di 3-5 g/dì. Quella del carico iniziale di creatina (20-25 grammi nei primi giorni) è una teoria ormai superata, in quanto nel cronico un dosaggio più contenuto ma costante dà i medesimi risultati di uno, almeno inizialmente, più spinto [20]. Tuttavia, l’assunzione di 20-25 g/dì può avere senso in acuto. Se ad esempio al week-end c’è una gara, un atleta potrebbe ricorrere al carico di creatina (diviso in singole dosi di 5 grammi l’una) a partire dal lunedì della stessa settimana.

    Esempio pratico

    Lunedì: 20-25 g
    Martedì: 20-25 g
    Mercoledì: 20-25 g
    Giovedì: 20-25 g
    Venerdì: 20-25 g
    Sabato: 5 g
    Domenica: gara

    Può essere presa in vari momenti della giornata (in compresse o polvere), appena svegli, in concomitanza o 30 minuti dopo un pasto, 90 minuti prima di un allenamento o poco dopo.

    Conclusioni

    Che dire, siamo davanti ad uno degli integratori alimentari più studiati e più efficaci in assoluto. E’ consigliabile provarla almeno negli sport di forza, potenza e anaerobici (alta intensità e breve durata). Meno indicata per gli sport più aerobici come il nuoto o le corse di lunga durata (maratona), tenendo anche conto del problema legato al leggero aumento del peso.

    Ovviamente prima bisogna guardare alle priorità alimentari e concentrarsi sull’allenamento, la creatina non ha nulla di miracoloso, tuttavia può essere un valido alleato per molti.

    Buon allenamento!


    oc
    Bibliografia

    Cravanzola E.  – Caffeina per la performance e la salute: tutto quello che bisogna sapere (2018)

    1 Buford T. W. et al. – International Society of Sports Nutrition position stand: creatine supplementation and exercise (2007)

    2 Gualano B. et al. – In sickness and in health: the widespread application of creatine supplementation (2012)

    3 Kreider R. B. – Effects of creatine supplementation on performance and training adaptations (2003)

    4 Preen D. et al. – Effect of creatine loading on long-term sprint exercise performance and metabolism (2001)

    5 Stone M. H. et al. – Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players (1999)

    6 Jones A. L. et al. – Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players (1999)

    7 Greenhaff L. P. – The nutritional biochemistry of creatine (1997)

    8 Syrotuik D. G. et al. – Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders (2004)

    9 Vandenberghe K. et al. – Caffeine counteracts the ergogenic action of muscle creatine loading (1996)

    10 Doherty M. et al. – Caffeine is ergogenic after supplementation of oral creatine monohydrate (2002)

    11 Spradley B. D. et al. – Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance (2012)

    12 Lee C. L. et al. – Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance (2011)

    13 Vanakoski J. et al. – Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations (1998)

    14 Fukuda D. H. – The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans (2010)

    15 Chanutin A. – The fate of creatine when administered to man (1926)

    16 Schantz E. et al. – Creatine ethyl ester (1955)

    17 Spillane M. et al. – The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels (2009)

    18 Jagim A. R. et al. – A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate (2012)

    19 Pline K. et al. – The effect of creatine intake on renal function (2005)

    20 N. Wilder et al. – The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players (2001)

    21 Branch J. D. – Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis (2003)

    22 Green et al. – Creatine ingestion augments muscle creatine uptake and glycogen synthesis during carbohydrate feeding in man (1996)

    23 Nelson A. G. et al. – Muscle glycogen supercompensation is enhanced by prior creatine supplementation (2001)

    24 Derave W. et al. – Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans (1985)

    25 Andres S. et al. – Creatine and creatine forms intended for sports nutrition (2017)

  • Test atletici per sport da combattimento

    Test atletici per sport da combattimento

    AJPrima di ogni training camp, sia che si tratti di professionismo o di semplice dilettantismo, è buona cosa far effettuare agli atleti dei test specifici, per valutare lo stato di forma e capire quali sono i punti deboli e quali quelli di forza. Durante l’imminente macrociclo di allenamento, si andrà ovviamente a lavorare di più sui primi e un po’ meno sui secondi. Per chi fosse poco ferrato in materia è consigliabile fare prima un breve ripasso sulle capacità condizionali e coordinative (qui) e sui sistemi energetici (qui).

    Questo e molto altro ancora nel libro sullo strength and conditioning per sport da combattimento che è attualmente in fase di scrittura.

    Buona lettura!

    Capacità organico-muscolari e coordinative da testare
    • Forza massimale
    • Forza esplosiva (o potenza)
    • Forza resistente
    • Resistenza
    • Velocità/rapidità
    • Mobilità articolare
    • Stabilità ginocchio
    Test atletici e relativi valori

    Forza massimale: panca piana; squat; stacco da terra; trazioni zavorrate.

    Ovviamente è di fondamentale importanza la tecnica. Possedere il corretto schema motorio consente di reclutare i giusti muscoli (tenendo comunque presente che si tratta di esercizi multiarticolari) e di limitare il rischio infortunio.

    Panca piana: 1,25-1,5x Bw; Squat: 1,5-2xBw

    Stacco: 1,75-2xBw; Trazioni zavorrate: 0,25-0,5xBw*

    *le cifre rappresentano i carichi massimali che gli atleti riescono a sollevare (1RM) riferiti al proprio peso corporeo (Bw, bodyweight). Riguardo alle trazioni, il peso è il sovraccarico legato alla vita tramite la cintura. Ad esempio, un atleta che pesa 100 kg (x0,25 o x0,5) deve riuscire ad eseguire una trazione alla sbarra completa con una zavorra di almeno 25 kg.

    Forza esplosiva: push press; vertical jump; broad jump; plyo box jump up.

    A differenza degli esercizi di forza massimale, qui entrano in gioco veramente troppi fattori soggettivi. E’ quindi molto difficile stabilire una scala di valori numerici per i vari esercizi. Eccetto che per il push press: 0,75-1xBw.

    Gli esercizi esplosivi riguardano i piani di movimento tipici degli sport da combattimento (frontale e trasversale). Le unità di misura per tutti e tre i salti sono, ovviamente, in centimetri.

    Forza resistente: push ups max reps; pull ups max reps, plank max time.

    Qui c’è poco da spiegare, un esercizio di spinta, uno di trazione ed uno di isometria del core. Massimo numero di piegamenti sulle braccia consecutivi, massimo numero di trazioni prone (pull ups) ed infine un ponte (plank) mantenuto per più tempo possibile (senza perdere la contrazione addominale).

    Resistenza: test di Conconi (individuazione soglia anaerobica) e test di Cooper; è necessario per prima cosa prendere il battito cardiaco a riposo.

    TEST

    Il test di Conconi può essere effettuato in laboratorio (su cicloergometro), su tapis roulant o cyclette, in alternativa anche su pista di atletica [1]. Quest’ultima opzione è la meno attendibile e infatti sta cadendo un po’ in disuso. Il test di Cooper va invece fatto per avere un’idea generale della resistenza fisica dell’atleta. Consiste nel correre per dodici minuti di fila, cercando di coprire la maggior distanza possibile [2]. Sui tapis roulant più moderni, si possono eseguire entrambi questi test, insieme a molti altri (foto a sinistra).

    Di seguito, i risultati ritenuti più o meno soddisfacenti (da molto bene a malissimo), espressi in metri, rapportati alla varie fasce di età (si parla ovviamente di uomini attivi e perfettamente sani). Ulteriori approfondimenti, compresi i valori validi per la popolazione femminile, li potete trovare qui.

    valutazioni

    Velocità: sprint sui 40 metri e test delle due linee.

    Indicativamente dei tempi ritenuti soddisfacenti per gli sprint sui 40 m sono:

    Uomini → mediocre: 5.20-5.40″; buono: 5.19-4.90″; ottimo: <4.90″.

    Donne → mediocre: 5.90-5.65″; buono: 5.64-5.35″; ottimo: <5.35.

    I valori si riferiscono ad atleti sani con un’età compresa fra 18-35 anni.

    40m

    Il secondo test consiste invece nel tracciare due linee parallele, distanti circa 40 cm (immagine riportata sotto) e nell’andare con i piedi “avanti e indietro” per il maggior numero di volte possibile nel tempo concesso (dieci secondi).

    40 cm
    Una singola ripetizione dell’esercizio (non ci sono spostamenti laterali)

    Si parte con entrambi i piedi dietro ad una linea (B) e si portano i piedi oltre la linea opposta (A) uno per volta, alla massima velocità possibile, poi alla stessa maniera si riportano i piedi dietro alla line di partenza (B), e così via, senza interruzioni, fino allo scadere del tempo (10″). Nella figura sopra, tutti i passaggi (1-5) corrispondono ad una singola ripetizione dell’esercizio.

    Mobilità articolare: sit and reach e test di mobilità delle spalle (sollevamento bracia con bacino retroverso e schiena appoggiata ad un muro).

    Il sit and reach test consiste nel ricercare la massima estensione della catena muscolare posteriore da seduti, inclinando il busto in avanti (figura sotto). Le punte delle dita devono cercar di toccare la porzione della tavola più distante possibile. Si salverà il risultato facendo un segno proprio sulla superficie della tavola posizionata poco sopra i piedi ed annotando la distanza raggiunta. A questo link potete trovare un video pratico del test.

    Invece nell’altro test, dopo un breve riscaldamento, l’atleta si posiziona di spalle ad un muro, con la schiena perfettamente aderente alla parete in ogni suo punto (zona lombare compresa).

    Cattura

    Successivamente deve sollevare gli arti superiori provando a toccare il muro alle proprie spalle, mantenendo ovviamente l’articolazione del gomito bloccata. Si misura con un metro (o righello) la distanza delle mani dalla parete.

    Con le suddette regole, la maggior parte delle persone non è in grado di arrivare a toccare la parete. Quando la mobilità richiesta in questa prova viene raggiunta, si passa ad esercizi più impegnativi, di cui magari parleremo in futuri articoli.

    Stabilità ginocchio: lateral and medial single leg hop series (video sotto). Con questo esercizio si valuta la stabilità dell’articolazione del ginocchio, una delle più soggette agli infortuni. Nel caso venissero notate delle problematiche (valgismo, varismo, scarso equilibrio, errato appoggio monopodalico), queste dovranno essere corrette, se necessario con la supervisione di un fisioterapista od un fisiatra.

    Conclusioni

    Quelli di cui abbiamo appena parlato sono i principali test che un preparatore atletico serio dovrebbe far eseguire ai propri atleti praticanti SdC. Ovviamente nulla vieta di sostituirne alcuni con delle varianti, ci sono anche vari fattori che entrano in gioco (disponibilità delle strutture, caratteristiche individuali dei fighters, infortuni pregressi, tipo di programmazione, tempo a disposizione, eccetera). I test vanno eseguiti all’inizio di ogni training camp e vanno poi ripetuti all’inizio del training camp successivo, confrontando i risultati.

    Senza numeri sono tutti atti di fede

    Detto ciò, non resta che salutarci ed augurare a tutti un buon allenamento!


    oc
    Bibliografia

    [1] Conconi F. et al. – Determination of the anaerobic threshold by a noninvasive field test in runners (1982)

    [2] Cooper H. K. et al. – A means of assessing maximal oxygen intake. Correlation between field and treadmill testing (1968)

    Landow L. – Ultimate conditioning for martial arts (Human Kinetics 1a Ediz., 2016)

    Riccaldi A. – The chronicles of Legionarius: la preparazione atletica di Alessio Sakara (2013)

    Bertuzzi R. – Energy System Contributions During Incremental Exercise Test (2013)

    Cravanzola E. – Allenarsi in base alla frequenza cardiaca (2016)

    Travis N. Triplett – Assessing Speed and Agility Related to Sport Performance (2012)

  • Acido lattico e lattato: qual è la differenza?

    Acido lattico e lattato: qual è la differenza?

    E’ capitato a qualunque sportivo di parlare o sentir parlare almeno una volta di acido lattico e magari anche di lattato. Spesso confusi, questi due non sono in realtà la stessa cosa e adesso vedremo brevemente il perché.

    Lactic-Acid-Burn.jpg

    L’acido lattico è un composto chimico che viene prodotto dai muscoli durante la  degradazione anaerobica del glucosio.

    Durante sforzi muscolari di una certa intensità, superata un certa quantità di tempo (mediamente 9-12 secondi), nei muscoli interessati inizia ad accumularsi più acido lattico del dovuto: l’organismo non è più in grado di smaltirlo come dovrebbe.

    Quando l’acido lattico, dal muscolo viene spostato nel torrente ematico, prende il nome di lattato, dato che la sua struttura chimica viene modificata (perde uno ione H+).

    acido-lattico-lattato

    Dopo sforzi fisici ripetuti, grafico qui sotto, è possibile effettuare dei prelievi di sangue dalla punta delle dita o dalle vene delle braccia per scoprire qual è la soglia del lattato.

    Capture.JPG
    Relazione tra intensità di esercizio (vel. di corsa) e accumulo di lattato. I campioni di sangue sono stati prelevati dopo che il corridore aveva corso per 5 minuti a ciuscuna delle velocità riportare sull’asse delle ascisse (LT = soglia del lattato).

    Mettendo su grafico i risultati, chiameremo soglia del lattato il punto oltre il quale l’accumulo di lattato ematico schizza alle stelle, superando di gran lunga i livelli tenuti a riposo. La LT, nelle persone sedentarie, corrisponde a circa il 55-60% del VO2max, negli atleti agonisti praticanti sport di resistenza anche 70-80%.

    Fino a un po’ di anni fa la soglia del lattato era, a detta di molti, corrispondente a 4 mmoli/L ma questa cifra, rimessa in discussione negli ultimi anni, in reltà altro non è che una media ottenuta da vecchie indagini effettuate su larga scala. Possono esserci soggetti con una LT di 3 come di 5 o 6 mmoli litro di lattato ematico.

    Quindi ricordate bene, il lattato e l’acido lattico NON sono la stessa cosa!

    Grazie per l’attenzione!


    oc
    Bibliografia

    Willmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005)

    Cravanzola E. – Energia e sport (2016)