Overtraining e sovrallenamento, parole che tutti si mettono in bocca, alle volte anche a sproposito. Ora, partendo dalla fisiologia umana, andremo a capire cos’è il sovrallenamento, quali i fattori scatenanti, i sintomi e come evitarlo. Buona lettura!
«I was almost relieved when i injured my hamstring and had to curtail my competitive season»
Definizione e cenni di fisiologia sportiva
L’overtraining, o sovrallenamento, è una complessa sindrome psico-fisica nella quale lo sforzo fisico diventa insostenibile per l’organismo, quest’ultimo infatti non riesce più a recuperare dalla fatica accumulata. Ne consegue un calo delle prestazioni atletiche. Alle volte, il sovrallenamento culmina col il rifiuto da parte dell’atleta di allenarsi.
Gli stressors che agiscono durante l’allenamento sportivo causano considerevoli alterazioni all’omeostasi e/o alle funzioni dell’organismo che da essi sono stimolate, determinando una serie di adattamenti fisiologici sia a riposo che sotto sforzo.
Nelle persone comuni, che non vivono di sport, questa sindrome non è data unicamente dall’allenamento ma anche da altri fattori di stress quotidiano (famiglia, impegni lavorativi, eccetera).
L’overtraining non va confuso con l’overreaching (o sovraffaticamento), il quale indica un calo delle prestazioni ma a breve termine, da due o tre giorni ad un paio di settimane [1,2]. In altri termini, potremmo dire che il sovraffaticamento non è altro che un sovrallenamento più lieve.
Come mostrato nel grafico a sinistra, stimoli allenanti eccessivi, già nell’arco di pochi giorni possono alterare il corretto quadro ormonale. Il testosterone ha un netto calo, lo stesso vale per tiroxina (un ormone tiroideo), al contrario il cortisolo (ormone dello stress) schizza alle stelle. L’antagonismo fra testosterone e cortisolo è detto T/E ratio.
Un allenamento massimale che sfocia poi in uno stato di sovrallenamento, riduce la variabilità della frequenza cardiaca [3]. Ad esempio, se il signor Giancarlo durante uno sforzo fisico passa da 140 a 170 bpm (sbalzo di 30 battiti), in uno stato di sovrallenamento, durante il compimento del medesimo sforzo avrà uno “sbalzo” di bpm minore.
Il sovrallenamento arriva ad intaccare persino il sistema immunitario: riduzione delle immunoglobuline salivari IgA, riduzione della funzionalità dei globuli bianchi, riduzione rapporto linfociti T CD4/CD8 (helper/suppresor) ed infezioni virali ricorrenti.
Incidenza del sovrallenamento…
– 70% degli atleti di resistenza ad alto livello nell’arco della loro carriera [4]
– Più del 50% dei calciatori professionisti durante 5 mesi di stagione agonistica [5]
– 33% di giocatori di basket durante 6 settimane di sedute di allenamento [6]
A voler essere pignoli, il sovrallenamento è suddivisibile in due tipologie principali: sovrallenamento simpatico e sovrallenamento parasimpatico. Il primo è associato ad un eccesso di attività anaerobica (quindi intensa) e si “cura” con massaggi, bagni in acqua e recupero attivo (allenamenti leggeri, poco intensi). Invece, quello parasimpatico è attribuito a lavori aerobici molto voluminosi. Per tornare in un buono stato di salute, anche qui è consigliato fare bagni in acqua (possibilmente fredda) e recuperare attivamente con allenamenti poco intensi e poco voluminosi.
Sintomi
I sintomi (e segni) principali del sovrallenamento sono i seguenti:
Affaticamento persistente
Difficoltà a dormire
Dolori muscolari cronici
Apatia
Difficoltà a concentrarsi
Depressione
Aumento frequenza cardiaca a riposo
Aumento pressione arteriosa a riposo
Disturbi gastro-intestinali
Perdita di peso
Squilibri ormonali
Calo delle prestazioni
Segni di una disfunzione neuro-endocrina [1] con elementi di dominanza o di riduzione del sistema nervoso simpatico.
Prevenzione e rimedi
Un po’ di indicazioni per prevenire il sovrallenamento…
Monitorare parametri come la FC o la pressione a riposo
Individualizzare l’allenamento
“Giocare” bene con valori allenanti (intensità, volume, densità, frequenza)
Sostenere il sistema immunitario con la vitamina C, D ed i grassi Omega-3
Parlare molto con l’atleta, in modo da riceve i feedback sulle sue sensazioni e sul suo stato di salute psico-fisico
Nei casi peggiori può essere utile rivolgersi a delle figure esterne (medico, psicologo, nutrizionista) ed effettuare degli esami clinici specifici (ematocrito, emoglobina, azotemia, cortisolo, testosterone, CPK).
*in Medicina dello sport, lo scarico attivo (minor volume e/o intensità di allenamento) è consigliato per l’overreaching e lo scarico passivo (periodo nel quale non ci si allena) per l’overtraining vero e proprio.
Riassunto di un po’ tutto quella che è stato detto fino ad ora [7]
Conclusioni
Risulta chiaro che più che alle persone che si allenano per passione 2-3-4 volte a settimana, la popolazione maggiormente esposta al rischio overtraining sia quella degli sportivi professionisti. I professionisti possono arrivare ad allenarsi anche tre volte al giorno e proprio per questo motivo è di fondamentale importanza monitorare tutti i parametri precedentemente citati ed avere sempre un buon dialogo con gli atleti.
Parodi G. – Medicina dello sport (Dispense Universitarie SUISM, a.a. 2016/2017) Weineck J. – Biologia dello sport (Calzetti Mariucci, 2013) Wilmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Ediz. Calzetti Mariucci, 2005) Olsen L. – Overtraining: A Molecular Perspective (2016) Armstrong L. E. et al. – The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology (2002) Budgett, R. – Fatigue and underperformance in athletes: the overtraining syndrome (1998) Budgett, R. – Overtraining syndrome (1990) James D. V. B. et al. – Heart rate variability: Effect of exercise intensity on postexercise response (2012) Kreher, J. B. et al. – Overtraining Syndrome: A Practical Guide (2012) Burnstein B. D. – Sympathetic vs Parasympathetic overtraining – Selecting the proper modality to maximize recovery (2017) 1 Fry A. C. – Resistance exercise overtraining and overreaching. Neuroendocrine responses (1997) 2 Kuipers H. et al. – Overtraining in elite athletes. Review and directions for the future (1988) 3 Uusitalo A. L. et al. – Heart rate and blood pressure variability during heavy training and overtraining in the female athlete (2000) 4 Morgan et al. – Psychological monitoring of overtraining and staleness (1987) 5 Lehmann M. et al. – Training-Overtraining: Influence of a Defined Increase in Training Volume vs Training Intensity on Performance, Catecholamines and Some Metabolic Parameters in Experienced Middle- And Long-Distance Runners (1992) 6 Verma S. K. et al. – Effect of four weeks of hard physical training on certain physiological and morphological parameters of basket-ball players (1978) 7 Mackinnon L. et al. – Overtraining (1991)
E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!
Cos’è l’EPO?
Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.
Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.
N.B: benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).
Come incrementare i livelli di EPO
Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].
Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.
Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.
Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.
Risposte fisiologiche e adattamenti all’allenamento ad alta quota
La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].
Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].
*Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.
In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].
Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2, questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.
La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.
Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].
Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.
Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.
Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.
Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.
“La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione. Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.
Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.
L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].
Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.
Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.
Sulla questione muscolare non si sa molto altro.
Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).
Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:
diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
aumento del nervosismo;
peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?
L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.
Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.
Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.
Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.
In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.
Allenarsi in alto e gareggiare in basso
Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.
Allenarsi in basso e gareggiare in alto (live high and train low)
Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.
Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].
Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).
Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]
Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.
Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.
Controindicazioni più e meno gravi dell’allenamento in altura
Scottature solari e oftalmia delle nevi;
irritazioni delle vie respiratorie;
mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
emorragia retinica (si verifica dai 6000 m in poi).
Due parole sulla training mask (TM)
Negli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.
Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.
A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).
Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]
“Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro: – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici. – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%). – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta. – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti). – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].
Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).
Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].
Conclusioni
Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.
Willmore H. J., Costill L. D. – Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005) Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017) Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016) 1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991) 2 Strømme A. B. – Training at altitude (1980) 3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983) 4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007) 5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996) 6 Schoene et al. – Limits of human lung function at high altitude (2001) 7 E. R. Buskirk et al. – Maximal performance at altitude and on return from altitude in conditioned runnerd (1967) 8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate 9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975) 10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967) 11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967) 12 Schmitt et al. – ??? (2008) fonte primaria errata sul libro di riferimento 13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000) 14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001) 15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004) 16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989) 17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988) 18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005) 19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973) 20 Chapman et al. – Individual variation in response to altitude training (1998) 21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002) 22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016) 23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016) 24 Ness J. – Is live high/train low the ultimate endurance training model?
The HICT, high intensity continuous training, is a training method used for increase the aerobic strength endurance in sports. This method is widely used for combat sports conditioning (boxing, MMA, wrestling…). The objective of high intensity continuous training is improve the resistance to the efforts trough the rise of mitochondrial number in fast twitch muscle fibers (IIa). The IIa type is only muscle fibers which may have this mitochondrial increase for their physiological characteristics.
Is necessary utilize not specific exercises for monitoring the principal parameter: heart rate (bpm). The indicate exercises or machines are spinbike, sled dragging, versaclimber. Is very important not exceed the anaerobic threshold (around 155-165 bpm) for obtain the right effects. For some authors, the problem of this training is the decrement of FTa rapid contraction and dimension, therefore is important combine the HICT with plyometrics workouts [1,2].
Example of training
Versaclimber: 15-20′ of continuous work (with the hearth rate under the anaerobic threshold);
Rest (5-8 minutes);
Sandbag Box Step Ups: 15-20′ of continuous work (with the hearth rate under the anaerobic threshold).
To notice, in the video of the versaclimber, the heart rate monitor, an essential tool for a correct work.
Good work.
This article is written by an Italian guy, I apologize for any possible spelling errors. Any correction is welcome.
Riccaldi A. – Strength endurance: la forza resistente per il grappler – Parte 2 (2012) Lochner E. – HICT: un metodo innovativo per le MMA (2016) Wêineck J. – Biologia dello sport (Calzetti Mariucci, 2013) Cravanzola E. – Allenarsi in base alla frequenza cardiaca (2016) 1 Andersen et al. – Myosin heavy chain isoforms in single fibres from m.vastus lateralis of sprinters: influence of training (1994) 2 Malisoux et al. – Calcium sensitivity of human single muscle fibers following plyometric training (2007)
La corsa è senza dubbio il tipo di attività fisica più praticato in assoluto. Da chi corre per sport, a chi lo fa semplicemente per passione e salute.
In questo articolo vedremo come allenarci per diverse finalità, correndo in base alla nostra frequenza cardiaca (fc).
Prima però è necessario fare un passettino indietro: cos’è la frequenza cardiaca? E i bpm? La frequenza cardiaca è il numero di battiti del cuore al minuto, questi ultimi, abbreviati con “bpm”, sono la sua unità di misura. Per lavorare bene, con una certa precisione, è consigliabile spendere una cinquantina di euro per acquistare un cardiofrequenzimentro, ci si può allenare ed ottenere buoni risultati anche senza di esso ma sarà più difficile, l’autoregolazione non è una cosa alla portata di tutti.
Per allenarsi senza cardiofrequenzimetro bisognerà ricorrere alla scala di Borg (o scala RPE), tutti i dettagli qui. Nel caso si voglia invece ottenere un numero, indicativo, dei battiti cardiaci si può ricorrere alla misurazione manuale. Ecco il procedimento: mettere due dita alla base del collo, contare i battiti per 15″ esatti e poi moltiplicare il numero ottenuto per quattro.
Per calcolare la nostra frequenza cardiaca (teorica) ci sono varie formule matematiche, quelle che seguono sono le due più accreditate:
220 - età (anni)
Oppure: 208 - 70% età
es. Lorenzo, 20 anni, FC massima di 200 bpm
Nelle persone sane la FC a riposo è compresa fra i 60 e i 100 bpm, negli sportivi di un certo livello può essere leggermente più bassa (40-50 bpm).
Ora è giunto il momento di introdurre un altro concetto: VO2max. Il VO2max è un parametro biologico che esprime il volume massimo di ossigeno che un essere umano può consumare nell’unità di tempo per contrazione muscolare.
E’ misurabile direttamente tramite cicloergometro o indirettamente con altri test fisici. L’allenamento può migliorarlo di circa il 25%. Nei soggetti allenati la soglia anaerobica (punto di passaggio della produzione di energia dal sistema aerobico – in via principale – a quello anaerobico lattacido) corrisponde, negli sportivi, all’85% circa del VO2max e al 60% nei soggetti sedentari.
Per ulteriori approfondimenti sui sistemi energetici clicca qui
Una volta giunti in prossimità della soglia anaerobica (SA), il metabolismo energetico verrà shiftato maggiormente sugli zuccheri, aumenterà l’accumulo di acido lattico e la respirazione sarà più difficoltosa. Oltre il VO2max , in regime alattacido, gli sforzi potranno essere mantenuti per pochi secondi e non si accumulerà acido lattico durante il normale svolgimento di attività fisica.
Durante l’allenamento, in base alla frequenza cardiaca (FC), possiamo stabilire con discreta precisione quale sistema energetico sia maggiormente attivo. Essa può variare in base all’anzianità di allenamento, sesso ed età di una persona. Ad esempio con una FC inferiore o uguale ai 160-170 bpm (battiti per minuto), il sistema principalmente coinvolto in un uomo giovane ed allenato sarà quello aerobico.
Effetti allenanti in base alla FC massima
<60% = lo stimolo è molto debole, considerato poco allenante
60-75% = capacità aerobica
75-85% = potenza aerobica e soglia anaerobica
85-92% = allenamento anaerobico e tolleranza lattacida
In passato era credenza comune pensare che un allenamento prolungato a bassa intensità fosse più indicato per il dimagrimento, tanto da chiamare il range compreso fra il 60 ed il 75% della frequenza cardiaca: “zona lipolitica”. Tuttavia si è visto che, benché un allenamento poco intenso attinga maggior energia dai grassi (figura sotto), ciò non significa che in cronico un’attività fisica ad intensità moderata (60-75% FC), abbia effetti dimagranti così superiori rispetto ai protocolli di allenamento più intensi, questo a parità di dispendio calorico [1,2,3,4,5,6]. Se l’obiettivo è il dimagrimento, la dieta è sempre il fattore principale.
Riguardo invece alla correlazione fra la scala RPE e la FC max, per farla breve, la scala utilizza de valori numerici, da 6 a 20 ed i valori della FC massima sono a grandi linee i seguenti.
Prima di lasciarci, una curiosità. Un test di accuratezza che ha analizzato alcune tipologie di cardiofrequenzimetro, ha rivelato che rispetto all’ECG (elettrocardiogramma), i cardiofrequenzimetri più precisi sono quelli che si posizionano sul petto (precisione del 99,6%), molto meno fedeli sono invece quelli da polso (67-92%).
Gollin M. – Metodologia della preparazione fisica (Elika, 2014) Fagioli F., Bartoli L. – Allenarsi con il cardiofrequenzimetro (Elika, 1998) Wikipedia – Scala di percezione dello sforzo (link) Andy Peloquin – Chest Strap Vs Wristband Heart Rate Monitors 1 Schoenfeld B. J. et al – Does cardio after an overnight fast maximize fat loss? (2011) 2 Ballor D. L. et al. – Exercise intensity does not affect the composition of diet- and exercise-induced body mass loss (1990) 3 Grediagin A. et al. – Exercise intensity does not effect body composition change in untrained, moderately overfat women (1995) 4 Mougios V et al. – Does the intensity of an exercise programme modulate body composition changes? (2006) 5 Pansini L. – Bruciare grassi non significa dimagrire (parte 2): effetto dell’attività fisica (2017) 6 Keating S. E. et al. – A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity (2017)