Altro appuntamento con i nostri articoli inerenti le articolazioni umane. Quanto segue può interessare chiunque pratichi sport, o lavori, che coinvolgono molto gli arti superiori. Buona lettura!
Cenni anatomici
Il gomito è un’enartrosi, quindi una articolazione che gode di un’ottima mobilità, composta da innumerevoli ossa. La foto riportata qui sotto può dare una mano a farsi un’idea della sua complessità.
Il gomito è composto dall’unione di tre differenti articolazioni: omero-ulnare, omero-radiale e radio-ulnare. Volendo sintetizzare il tutto:
omero-radiale = estremità distale dell’omero + estremità prossimale del radio;
radio-ulnare = estremità prossimale del radio + estremità prossimale dell’ulna.
Sulla porzione medio-distale dell’omero (la parte centrale e “bassa” vicino al gomito) vi sono i punti di inserzione prossimale del muscolo brachiale e del capo mediale del tricipite brachiale. Al “fondo” dell’omero, medialmente, abbiamo la troclea e l’epicondilo mediale, e lateralmente un capitello omerale e l’epicondilo laterale (l’epicondilo mediale dell’omero è detto anche epitroclea). Dalla troclea si diramano poi due piccole sporgenze: il labbro mediale ed il labbro laterale (figura sotto).
Sotto, un’illustrazione del gomito destro visto anteriormente (sinistra) e posteriormente (destra).
Riguardo l’ulna, bisogna sapere che è dotata dell’oleocrano, ossia una estremità arrotondata che conferisce al gomito la sua visibile “punta”. Inoltre, la superficie ruvida posteriore dell’oleocrano accoglie l’inserzione del tricipite brachiale. Sempre lì in loco vi è la cresta del supinatore, la quale delinea il punto di inserzione del legamento collaterale radiale e del muscolo supinatore. Come non citare anche la tuberosi dell’ulna, la quale accoglie l’inserzione del muscolo brachiale (da non confondere con il bicipite brachiale).
Visione anteriore del radio ed ulna (braccio destro)
Visione posteriore del radio ed ulna (braccio destro)
Passando infine al radio, questo rappresenta una parte relativamente piccola del gomito ma una grossa parte dell’articolazione del polso. L’estremità prossimale del radio, poco sotto la testa dello stesso – vicino al gomito -, presenta il collo del radio e la tuberosità radiale. In corrispondenza di quest’ultima, detta anche tuberosità bicipitale, si inserisce sull’osso il bicipite brachiale.
Seppur in maniera diversa, sia l’articolazione omero-ulnare che omero-radiale stabilizzano e mettono in sicurezza l’articolazione del gomito. La prima dà stabilità attraverso lo stretto contatto tra la troclea e l’incisura trocleare, mentre la seconda stabilizza grazie al supporto della testa del radio contro il capitello omerale, insieme alle sue connessioni capsulo-legamentose.
Cenni biomeccanici
Il gomito ha funzione di pronazione-supinazione e di flesso-estensione, quest’ultima si ha interagendo con articolazioni minori come quella omero-ulnare e omero-radiale. Alcuni testi osservando il rapporto del gomito col braccio e l’avambraccio, definiscono il primo un compasso. Per farci un’idea della pronazione e supinazione basti pensare all’intra e all’extra-rotazione dell’avambraccio. Questo semplice movimento è molto caro agli sportivi che lo eseguono ogni volta in cui devono eseguire curl per i bicipiti o decidere quale presa utilizzare per le trazioni alla sbarra, lo stacco da terra, e così via. Potremmo tradurre il movimento come un: da in piedi e rilassato “giro” il palmo della mano verso avanti (supinazione) e poi, il contrario, verso dietro (pronazione).
Il movimento di flessione del gomito consiste nell’avvicinamento dell’avambraccio al braccio propriamente detto (quest’ultimo è la porzione di arto compresa fra il gomito e la spalla). Ne è un lampante esempio il curl per bicipiti, esercizio dove il braccio si flette, quasi a fare arrivare la mano alla spalla. Allo stesso modo, potremmo parlare di estensione citando il push down ai cavi; nell’estensione del gomito l’avambraccio si allontana dal braccio. I muscoli che fanno da motori della flessione sono il brachiale anteriore, brachioradiale e bicipite brachiale. Riguardo all’estensione, sono invece il tricipite brachiale e l’anconeo.
Sopra, la fisiologica flessione (avambraccio che va verso l’alto) ed estensione (avambraccio che va verso il basso) del gomito. Solitamente, quando questa articolazione è in salute, il range di movimento consentito parte da una leggera iperestensione (-5°) per arrivare fino a 145° di flessione. In rosa è evidenziato l’arco funzionale di movimento di 100 gradi totali (da 30° a 130°).
Per ulteriori approfondimenti, vi rimandiamo ai libri consigliati a fondo pagina.
L’anca è un’articolazione particolarmente grande e mobile che unisce parte del tronco agli arti inferiori.
Sopra, una visione frontale dei principali muscoli dell’anca.
Cenni anatomici
Osservando una qualsiasi tavola anatomica, partendo dall’alto possiamo notare la presenza dell’ileopsoas, muscolo allungato e piuttosto spesso formato dal grande psoas e dal muscolo iliaco; questi si inseriscono poi sul femore (piccolo trocantere). Va segnalata anche l’esistenza del muscolo piccolo psoas, situato ancor più internamente, lungo e sottile ma non sempre presente nell’uomo (muscolo rudimentale).
Si possono notare anche il legamento inguinale (che si trova appunto nella regione inguinale), il muscolo piriforme che unisce la parte interna dell’osso sacro al femore, e l’otturatore interno ed esterno. Riguardo questi ultimi, entrambi sono muscoli esterni dell’anca e hanno forma appiattita e triangolare.
Scendendo un po’, ci si può accorgere della presenza dei seguenti muscoli: pettineo, sartorio, gracile e adduttori (breve, grande e lungo). Andando in ordine, il pettineo ha come scopo quello di addurre (avvicinare) le cosce tramite, ovviamente, la contrazione muscolare. Interviene anche nei movimenti di flessione ed extrarotazione (rotazione esterna). Successivamente abbiamo il sartorio, muscolo estremamente lungo che corre lungo tutta la coscia, permette la flessione di quest’ultima sulla gamba, extrarotazione e abduzione; utile nella camminata, interviene inoltre nell’intrarotazione della tibia. Proseguendo abbiamo il gracile, muscolo profondo e piatto che contribuisce nell’adduzione delle cosce.
Riguardo invece agli adduttori veri e propri, questi sono tre: l’adduttore breve, quello lungo ed il grade.
Il primo è di forma triangolare, posizionato fra il muscolo pettineo e l’adduttore lungo e consente, come intuibile, l’adduzione delle cosce e l’extrarotazione del femore. Il suo cugino, l’adduttore lungo, si trova fra l’adduttore breve e l’otturatore esterno (anch’esso è di forma appiattita). Funge da adduttore delle cosce e da intrarotatore. Infine, dulcis in fundo, abbiamo il muscolo grande adduttore. Quest’ultimo è collocato fra i gracile e l’adduttore breve, è l’adduttore più potente in assoluto; oltre alla classica adduzione e alla retroversione del bacino, permette l’intrarotazione e flessione (coi suoi fasci anteriori), e l’extrarotazione ed estensione (coi suoi fasci posteriori). Nella raffigurazione qui sotto potete osservare i principali muscoli dell’anca visibili posteriormente.
Prima di passare alle nozioni biomeccaniche, sicuramente più interessanti per gli sportivi, cerchiamo di trattare in poche righe i muscoli della parte più posteriore dell’anca. I muscoli di questa porzione corporea che sono assolutamente da conoscere sono i seguenti: grande, piccolo e medio gluteo, bicipite femorale, muscolo semitendinoso e semimembranoso.
Il grande gluteo, come da nome, è un muscolo parecchio voluminoso che unisce il bacino al femore. Esso estende la coscia e ne permette i movimenti sull’asse trasverso (vedere il paragrafo successivo sulla biomeccanica), contribuisce al mantenimento della stazione eretta, della camminata ed estende l’anca. Il piccolo gluteo, meno voluminoso e più profondo, abduce ed intraruota la coscia, estende l’anca e contribuisce anch’esso al mantenimento della stazione eretta. Concludendo il discorso glutei, abbiamo infine il medio gluteo, muscolo appiattito e triangolare che estende l’anca, contribuisce al mantenimento della stazione eretta e abduce la coscia. Quest’ultima può venire intraruotata (con i fasci muscolari anteriori) ed extraruotata (fasci posteriori).
Per una corretta informazione va citato anche il muscolo gemello dell’anca (divisibile in una porzione inferiore ed una superiore), il quale ha il compito di extraruotare la coscia.
Cenni biomeccanici
L’anca gode di una buona mobilità a causa della sua funzione: orientare l’arto inferiore in tutte le direzioni dello spazio, possiede quindi tre assi e tre gradi di libertà:
Tenendo a mente la figura riportata sopra, si fa presente come sull’asse trasverso (X-X1) vengano effettuati movimenti di flesso-estensione (piano frontale), sull’asse antero-posteriore (Y-Y1) movimenti di abduzione-adduzione (piano sagittale) e su quello verticale, sovrapponibile al longitudinale, movimenti di rotazione interna ed esterna (intra ed extra-rotazione).
Volendo fare un confronto con l’articolazione della spalla (entrambe enartrosi), quest’ultima è meno stabile ma più mobile; l’anca, pur godendo di una buona movibilità, non raggiunge gradi di flessione o abduzione eccessivi, ma in compenso è piuttosto stabile e un po’ meno soggetta a infortuni.
Flessione ed estensione
Con la flessione dell’anca la superficie anteriore della coscia si avvicina al busto, mentre con l’estensione l’arto inferiore viene portato posteriormente rispetto al piano frontale (illustrazione qui sotto).
L’ampiezza della flessione, oltre che da particolarità anatomiche individuali, dipende dalla natura della flessione stessa (attiva o passiva) e dall’angolo del ginocchio. La flessione attiva ha ROM (range di movimento) ridotto rispetto a quella passiva e se il ginocchio è esteso la flessione consentita dall’apparato locomotore è minore, per effettuarla più ampia occorre che il ginocchio sia flesso (gamba raccolta con polpaccio e coscia vicini). L’estensione dell’anca – movimento della gamba “verso dietro” – è invece poco ampia, indipendentemente dal fatto che sia di tipo attivo (intervento dei muscoli) o passivo (arto inferiore “tirato” fisicamente). Questo limite fisiologico è dovuto principalmente alla tensione del legamento ileofemorale (fig. sotto).
Ovviamente, entro un certo limite, i movimenti di flessione ed estensione delle anche possono migliorare di ampiezza grazie ad un allenamento costante e ben svolto. Per approfondire la questione vi invitiamo a prendere visione del sempre valido Stretching: teoria e pratica.
Adduzione ed abduzione
L’adduzione porta l’arto inferiore in dentro (anche “forzando” il movimento e sovrapponendo una gamba all’altra), l’abduzione lo porta invece in dentro, rompendo la simmetria corporea (illustrazione qui sotto).
È possibile abdurre una sola anca ma arrivati a un certo grado di estensione verrà automatico abdurre anche l’altra (questo lo sa bene chi pratica ginnastica ritmica o kick boxing). Nella vita di tutti i giorni capita inoltre di abdurre gli arti inferiori in contemporanea, come? Incrociando le gambe. Ovviamente il medesimo risultato è ottenibile tramite altri movimenti volontari.
Portare un’anca in adduzione ed una in abduzione (le prime due donne stilizzate sopra) è una condizione assolutamente fisiologica, come del resto può esserlo avere entrambe le anche abdotte, basti pensare alla spaccata frontale.
Ulteriori approfondimenti nella bibliografia presente a fondo pagina.
Chi segue il canale Youtube di questo sito sa di un certo apprezzamento del sottoscritto nei confronti dello stacco da terra con la trap bar (o hex bar, bilanciere esagonale).
Introduzione: complementare o fondamentale?
Lo stacco con bilanciere esagonale viene solitamente visto come una delle tante varianti dello stacco tradizionale, forse perché l’ambiente dei pesi, almeno in questo caso, è un po’ figlio di una visione “powerlifter-centrica” degli esercizi. Se è indiscutibilmente vero che nel powerlifting (squat, panca, stacco) il “trap bar deadlifts” è un’alzata complementare, pertanto qualcosa di non fondamentale o prioritario, in un allenamento improntato sulla crescita muscolare (fitness/bodybuilding) o sul miglioramento della propria condizione atletica, la musica è differente. Riguardo a quest’ultimo punto, un programma ragionato di strength and conditioning potrebbe integrare lo stacco con trap bar principalmente in tre modi:
Esercizio complementare (forza): un atleta fa squat/leg press/stacco convenzionale più, in certi momenti, il trap bar deadlifts;
Esercizio fondamentale (forza): all’interno di un macrociclo di allenamento un atleta basa sul trap bar deadlifts l’aumento (o il mantenimento) della propria forza massimale;
Esercizio (fondamentale o complementare) di potenza: si eseguono dei salti esplosivi utilizzando come sovraccarico il bilanciere esagonale e un tot di dischi (trap bar jump deadlift).
Ma ora andiamo un po’ più nello specifico.
Punti a favore dell’esercizio
Maggiore attivazione dei quadricipiti rispetto allo stacco tradizionale;
A differenza del deadlift classico, il bilanciere non va mai a contatto con le tibie (assenza di abrasioni);
Permette di muovere il bilanciere con una certa velocità, anche con carichi sub-massimali (90% 1RM);
Generalmente si sollevano carichi leggermente superiori, sempre se lo confrontiamo all’alzata sua cugina.
Criticità
A livello biomeccanico il movimento potrebbe, giustamente, ricordare molto uno squat, ma il ROM (range di movimento) dell’accosciata è minore;
Se uno o più studi evidenziano una elevata potenza meccanica (sul bilanciere spostato) ed una notevole potenza metabolica muscolare, ciò non è detto che significhi: atleta che diventa più forte e potente (sempre se paragonato ad un ipotetico collega che si allena con altri esercizi multiarticolari).
Discutiamone un attimo
Il trap bar deadlift ed il deadlift standard hanno differente centro di massa, in questo il primo è più simile allo squat. In più, nel primo non vi è lo sticking point al ginocchio (punto critico dell’alzata), pertanto il sollevamento risulta un po’ più rapido e semplice.
Le immagini riportate sopra raffigurano i due tipi di stacco e provengono da uno studio che mettendo a confronto le due alzate ha osservato alcune cose interessanti1. Come già accennato nel precedente paragrafo, con la trap bar il carico massimo sollevabile (1RM) è un po’ superiore (+6%) e la velocità nei sollevamenti impegnativi (90% 1RM) è significativamente a favore dello stacco con bilanciere esagonale (+15%). Nello studio in questione, con lo stacco regular il bilanciere ha avuto una accelerazione che è durata per il 60% dell’intero tempo di alzata, mentre con trap bar per circa l’82% del tempo. Anche un altro studio condotto su soggetti esperti aveva evidenziato la tendenza degli atleti a sollevare qualche kg in più con la trap bar2.
Qui sotto, un po’ di dati (Lake J. et al., 2017):
Nella seconda immagine potete osservare come il momento più impegnativo nello stacco tradizionale (linea rossa) sia quasi a metà alzata: si parte rapidi, per poi rallentare l’alzata quando il bilanciere si trova nei pressi del ginocchio, discorso ben diverso per quello con trap bar. In quest’ultimo le incertezze vi sono all’inizio – momento della partenza -, poi tutto fila piuttosto liscio.
Greg Nuckols, coach e powerlifter d’élite, scrive che:
«It’s common to argue that conventional deadlifts should be trained instead of trap bar deadlifts because a trap bar deadlift isn’t a true “hinge” movement – more like a hinge/squat hybrid. So, the thinking goes, since you’re already training the squat (or at least you should be), you’re wasting your time with the trap bar deadlift since it won’t train the hinge pattern very well by itself, and it doesn’t train the squat pattern as well as actually squatting. While it’s true that trap bar deadlifts are a little bit “squattier” than conventional barbell deadlifts, they’re much closer to a “hinge” than a squat».
In poche parole, il trap bar deadlift non è un vero “hinge movement”, cioè un movimento a cerniera, molto anca-dipendente (come nello stacco tradizionale dove il grosso del movimento lo fa questa articolazione) ma nemmeno un movimento più ginocchio-dipendente (come il normale squat con bilanciere). Ciò tuttavia non significa che nei propri allenamenti non si debba dedicare del tempo a questo movimento (discorso diverso per i powerlifter, loro in gara portano direttamente lo stacco regular).
Circa il range di movimento, anche a seconda delle leve del soggetto in questione, lo stacco trap bar pare una sorta di via di mezzo fra uno squat classico (femore parallelo al terreno) ed un mezzo squat. Questo non rende sempre ottimale il lavoro muscolare, ma c’è un piccolo trucco per ovviare al problema (rialzo sotto ai piedi). Nel video in basso potete osservare un modo pratico per aumentare il ROM dello stacco con bilanciere esagonale: deficit trap bar deadlift.
Anche se raramente si vede effettuare qualcosa di diverso dallo stacco, col bilanciere esagonale si possono effettuare anche salti esplosivi, facendo oppure no la fase eccentrica sovraccaricata. Come? Molto semplicemente si salta verso l’alto (come in uno squat jump o 1/2 squat jump) e si atterra. Va tenuto a mente che occorre essere ben condizionati per tollerare l’impatto a terra con tutto il carico senza farsi male. Per rendere più leggero l’esercizio si può lasciare andare il bilanciere qualche istante prima di toccare il suolo coi piedi, facendolo rimbalzare sul pavimento (sempre che il proprietario della palestra non vi cacci via…).
Va citata anche una analisi elettromiografica pubblicata su Journal of Strength and Conditioning Research3 che ha sottolineato come durante la fase concentrica ed eccentrica dello stacco da terra, il bilanciere esagonale coinvolga maggiormente il vasto laterale, mentre il movimento dello stacco col bilanciere dritto il bicipite femorale (durante la concentrica) e gli erettori spinali (durante l’eccentrica).
Conclusioni
L’esercizio magico non esiste, l’arma vincente è sempre (o quasi) la variazione degli stimoli allenamenti sul lungo periodo. Anche se uno degli studi3 qui presi in esame, traducendo, arriva alle seguenti conclusioni: «Questi risultati suggeriscono che […] il bilanciere esagonale possa essere più efficace (rispetto a quello normale, ndr) nello sviluppo di forza, potenza e velocità massima», dobbiamo tenere a mente che non necessariamente una maggior potenza generata in un sollevamento porterà a futuri incrementi di forza, potenza o ipertrofia. Ciò non toglie che il bilanciere esagonale, spesso ingiustamente sottovalutato, possa essere un ottimo alleato per coach, atleti e personal trainer.
Buon allenamento!
Ho deciso di scrivere questo articolo anche grazie a dei post di Simone Calabretto che mi hanno fatto appassionare all’argomento. A lui vanno i miei ringraziamenti.
1 Jason Lake, Freddie Duncan, Matt Jackson, David Naworynsky – Effect of a Hexagonal Barbell on the Mechanical Demand of Deadlift Performance. Sports (Basel) . 2017 Oct 24;5(4):82.
2 Paul A Swinton, Arthur Stewart, Ioannis Agouris, Justin W L Keogh, Ray Lloyd – A biomechanical analysis of straight and hexagonal barbell deadlifts using submaximal loads. J Strength Cond Res . 2011 Jul;25(7):2000-9.
3 Kevin D Camara, Jared W Coburn, Dustin D Dunnick, Lee E Brown, Andrew J Galpin, Pablo B Costa – An Examination of Muscle Activation and Power Characteristics While Performing the Deadlift Exercise With Straight and Hexagonal Barbells. J Strength Cond Res . 2016 May;30(5):1183-8.
Il curl eseguito alla panca Scott è un must dell’allenamento delle braccia. Ma siamo davvero sicuri che sia così efficace? Il titolo provocatorio dell’articolo suggerisce di no. Ora, partendo dalla biomeccanica e fisiologia muscolare, cercheremo di scoprire i pro ed i contro di questo esercizio. Buona lettura!
Descrizione e cenni biomeccanica
In breve, l’esecuzione è la seguente: partendo da seduti si impugna il bilanciere, portandolo a pochi centimetri dal viso tramite la flessione del gomito, fin dove l’escursione articolare lo permette. Una volta terminata la fase concentrica, si lascia scendere il bilanciere fino a distendere quasi completamente gli arti superiori. La presa è supina, quindi con i palmi rivolti verso l’alto, garantita dall’articolazione del gomito, la quale appunto permette anche i movimenti di flessione ed estensione dell’avambraccio sul braccio (fisiologia articolare).
Nelle palestre si vede eseguire questo esercizio quasi sempre con il bilanciere ma può essere anche svolto con dei manubri.
“Difetti” dell’esercizio
Teoricamente il curl su panca Scott dovrebbe coinvolgere maggiormente il capo breve del bicipite brachiale, ma in realtà i test scientifici non hanno mai rilevato grosse differenze nella sua attivazione nei tre principali tipi di curl: in piedi (DBC), da seduti su panca inclinata (IDC) e Scott (DPC) [1].
Va comunque ricordato che l’attività muscolare, misurabile tramite le elettromiografie, non è un parametro troppo attendibile per quanto riguarda l’ipertrofia muscolare (approfondimenti qui).
Infatti, seguendo il diagramma tensione-lunghezza del tessuto muscolare, se un sollevamento inizia quando il muscolo target è in massimo allungamento, il muscolo non può esercitare alti livelli di forza. Stessa cosa se il muscolo, prima che inizi il sollevamento, è già molto accorciato. Infatti, anche in questa situazione la forza espressa non è molta. Per di più, in quest’ultimo caso il ROM (range of motion) è anche scarso. Il primo caso è quello del curl su panca Scott, il secondo riguarda invece il curl su panca inclinata.
Invece, il classico curl in piedi è un po’ una via di mezzo fra le due modalità di esecuzione. Il muscolo infatti non parte né troppo allungato, né troppo accorciato.
Dato il range di movimento veramente scarso, il curl Scott è sembrerebbe essere quello meno ottimale per la crescita muscolare. E c’è anche da considerare il fatto che le ripetizioni parziali in massimo accorciamento, rispetto a quelle in massimo allungamento, non siano l’ideale per l’ipertrofia (minor rilascio di IGF-1, ridotto stimolo meccanico e metabolico) [2]. In aggiunta, quando l’avambraccio è perpendicolare, o quasi, al suolo (fine della fase concentrica), la tensione esercitata sul bicipite brachiale è molto bassa, vicino allo zero. E’ importante sottolineare ciò perché la tensione continua ed il TUT sono dei fattori fondamentali dello sviluppo ipertrofico.
Come fatto notare dal Dott. Andrea Roncari (qui), un altro studio presente in letteratura scientifica [3] ha evidenziato che una flessione della spalla di circa 90°, cioè quella imposta da alcuni modelli di panca Scott, non sia ottimale per l’attivazione del bicipite brachiale, meglio una flessione meno ampia (75°). L’angolo di flessione è il rapporto fra l’arto superiore completamente disteso ed il busto. Ad esempio, quello nella figura a sinistra è un angolo di soli 50°, la maggior parte dei modelli di panca Scott presenti nelle palestre hanno una struttura che impone degli angoli di flessione maggiori.
Conclusioni
Ovviamente il curl Scott, come del resto ogni altro esercizio, può trovare il suo posto all’interno di una sensata programmazione dell’allenamento. Già solo il variare lo stimolo allenante è uno dei principi base dell’ipertrofia muscolare (alternare gli esercizi, tecniche di intensità nuove, tempo sotto tensione ecc.). Pertanto occasionalmente può essere inserito in delle schede di allenamento, magari abbinato ad esercizi a ROM più ampio. Sui neofiti, soggetti alle prime armi carenti un po’ in tutti i distretti muscolari, sarebbe saggio evitare – o comunque limitare il più possibile – esercizi come questo. Meglio incrementare la massa muscolare in toto e solo successivamente andare a lavorare sui dettali.
Kapandji – Fisiologia articolare (1999) 1 Oliveira L. F. et al. – Effect of the shoulder position on the biceps brachii emg in different dumbbell curls (2009) 2 McMahon G et al. – Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated (2014) 3 Moon J. et al. – The Effect of Shoulder Flexion Angles on the Recruitment of Upper-extremity Muscles during Isometric Contraction (2013)
L’hip thrust è un’esercizio che interessa principalmente gli arti inferiori, tornato alla ribalta negli ultimi anni grazie ad alcuni coach e studiosi d’oltreoceano, come per esempio Bret Contreras.
Oltre alla meraipertrofia, l’hip thrust può trovare il suo spazio anche all’interno di una preparazione atletica finalizzata al miglioramento delle capacità condizionali. In questo (altro…)
Come da titolo, in questo articolo parleremo del ritmo scapolo-omerale. Un meccanismo forse sconosciuto ai più ma che riveste una certa importanza, anche in ambito pratico, se si sollevano pesi o si compiono sforzi con gli arti superiori. Buona lettura!
Cenni di fisiologia articolare
La spalla è l’articolazione più mobile del corpo umano. Permette movimenti sui tre assi principali (asse trasversale, antero-posteriore, verticale).
Asse trasversale (piano frontale): permette movimenti di flesso-estensione sul piano eseguiti in un piano sagittale (fig. 1.a)
Asse antero-posteriore: è contenuto nel piano sagittale. Permette movimenti di abduzione degli arti superiori (l’arto superiore si allontana dal piano si simmetria del corpo) e di adduzione (l’arto superiore si avvicina al piano si simmetria del corpo) eseguiti in un piano frontale (fig. 2.b)
Asse verticale: determinato dell’inserzione del piano sagittale con quello frontale. Permette movimenti di flessione ed estensione eseguiti sul piano orizzontale, tenendo il braccio in abduzione a 90° gradi.
Figura n.1
Figura n.2
Altri movimenti della spalla e del braccio sono illustrati nella foto sotto
Ma ora veniamo a noi, il ritmo scapolo-omerale non è altro che il movimento contemporaneo di scapola ed omero. Durante l’elevazione della spalla, a seconda del grado di abduzione della scapola e dell’omero, lavoreranno più alcuni muscoli rispetto ad altri. Tutto ciò, ovviamente, è applicabile nello sport come in palestra. Alcuni gesti/esercizi interesseranno determinati distretti muscolari ed altri no.
Movimento combinato di scapola ed omero durante una abduzione
Uno degli studi più quotati in fisiologia articolare [1] evidenzia come nei primi 80° di abduzione degli arti superiori, quindi con le braccia quasi parallele al suolo, il ritmo scapolo-omerale si concentri sull’omero, dando maggior lavoro al deltoide (rapporto scapola-omero di circa 1:3)*. Invece, dagli 80° ai 140°, inizia a “lavorare” di più la scapola, pertanto c’è una maggior attivazione degli elevatori scapolari (trapezio superiore), con un rapporto scapola-omero indicativamente di 1:2. Infine, oltre i 140 gradi aumenta sempre di più l’attivazione degli elevatori della scapola (trapezio superiore, muscolo elevatore della scapole, piccolo romboide e grande romboide), sottraendo così lavoro al deltoide (rapporto 1:1).
*a seconda dei testi possiamo trovare delle cifre un po’ differenti ma comunque sempre vicine al range dei 70-90°.
Ricapitolando…
0-80° ⟶ rapporto scapola-omero di 1:3
80-140° ⟶ rapporto scapola-omero di 1:2
140-170° ⟶ rapporto scapola-omero di 1:1
80°
140°
170°
Applicazioni pratiche
Per rendere più concrete tutte queste informazioni, ci basta pensare a quali esercizi prevedono una abduzione delle braccia (figura sopra). Gli esercizi più comuni che includono quel movimento sono le alzate laterali con manubri, le tirate al mento (o al petto) e le distensioni sopra la testa (military press).
Alzate laterali: consistono nell’impugnare un manubrio e, partendo dai fianchi, portarlo all’altezza della base del collo, anche se non è raro vedere della varianti che prevedono un range di movimento più ampio (oppure ridotto). Ragionando su quanto detto prima, possiamo arrivare a concludere che portare le braccia a parallele al suolo come in figura sia effettivamente la scelta più corretta a livello biomeccanico. Andando oltre i 90° di abduzione delle braccia, i deltoidi inizierebbero via via a lavorare meno, quindi se l’intento è quello di allenare i muscoli della spalla e non gli elevatori delle scapole, terminare la fase concentrica dell’alzata una volta raggiunti i 90° di abduzione è una cosa più che sensata.
Tirate al mento/petto: questo esercizio per comodità si esegue quasi sempre con il bilanciere. Si parte con le braccia completamente distese, vicino alla vita, e si compie un piegamento degli arti superiori, portando il bilanciere al petto o in prossimità del mento. La versione dell’esercizio da preferire è quella che prevede la fine del sollevamento all’altezza del petto, perché il grado di abduzione degli arti superiori è sufficiente a garantire una marcata attività del deltoide, limitando l’intra-rotazione dell’omero (figura sotto) e quindi il rischio di impingement (che è statisticamente più alto nei soggetti che eseguono molto di frequente le tirate al mento) [2]. Questa problematica infatti si verifica oltre i 70-90° gradi di abduzione dell’omero [3], per questo motivo è consigliabile fermare l’alzata prima che il bilanciere raggiunga il mento, facendo arrivare i gomiti poco sotto l’altezza delle spalle.
Con omero intra-rotato (fig. sopra), il capo laterale del deltoide tende a prevalere su quello anteriore, l’esatto contrario avviene invece con l’extra-rotazione [4,5,6].
Distensioni sopra la testa (lento avanti): consistono nel sollevamento di un carico sopra la testa (manubri, bilanciere, kettlebell). Da in piedi, o seduti su panca, partendo con il peso all’altezza del mento (gomito parallelo al corpo), si esegue una spinta verso l’alto, gli arti superiori si distendono e poi si piegano per tornare al punto di partenza.
L’omero compie tutto il suo percorso in una abduzione laterale. E’ da evidenziare inoltre l’intervento del tricipite in fase di spinta che ricordiamo essere l’estensore del gomito (ne avevamo già parlato qui). Pertanto, grazie al coinvolgimento di molti muscoli, questo è indubbiamente l’esercizio per le spalle in cui si può esprimere una maggior forza, sollevando più peso. In termini di ipertrofia, questo si traduce in un maggior stimolo meccanico, elemento base della crescita muscolare. E’ proprio per questo motivo che nelle distensioni sopra la testa il peso viene spinto molto in alto, facendo compiere all’omero una abduzione molto ampia, che inevitabilmente coinvolge molto anche gli elevatori della scapola. E’ bene sottolineare che il motore principale di questo gesto rimane sempre e comunque il deltoide, l’intervento di altri muscoli è secondario. Inoltre, se l’esecuzione è corretta questo esercizio ha un bassissimo rischio di impingement od infortunio, a patto che il soggetto che lo esegue sia perfettamente sano.
Benché nell’allenamento conti molto la soggettività, ci sono basi biomeccaniche e fisiologiche comuni a tutti che devono essere rispettate. Non solo per quanto concerne l’ipertrofia ma anche per la salute. Gli esercizi citati nell’articolo possono essere utili per l’incremento della forza e della massa muscolare, basta saperli eseguire correttamente ed alternare gli stimoli allenanti nella maniera più opportuna.
Kapandji I. A. – Fisiologia articolare (1999) Boccia G. – Basi del movimento (Dispense universitarie SUISM, a.a. 2014/2015) 1 Bagg S. D. et al. – A biomechanical analysis of scapular rotation during arm abduction in the scapular plane (1988) 2 Kolber MJ et al. – Characteristics of shoulder impingement in the recreational weight-training population (2014) 3 Schoenfeld BJ et al. – The upright row: implications for preventing subacromial impingement (2011) 4 Botton C. E. et al. – Electromyographical analysis of the deltoid between different strength training exercises (2013) 5 McAllister M. J. et al. – Effect of grip width on electromyographic activity during the upright row (2013) 6 Reinold M. M. et al. – Electromyographic analysis of the supraspinatus and deltoid muscles during 3 common rehabilitation exercises (2007)
Gli assi ed i piani di movimento rappresentano le basi teoriche del movimento umano. Argomenti relativamente semplici che vanno tenuti a mente, soprattutto se si vuole parlare di argomenti nerd come la biomeccanica.
Assi di movimento
Piani di movimento
Piano frontale (o coronale): asse longitudinale e trasversale (anteriore – posteriore).
Piano sagittale: asse sagittale e longitudinale (destra e sinistra).
Piano trasverso (o orizzontale): asse sagittale e trasversale (superiore – inferiore).
Queste nozioni, anche se un po’ noiose da tenere a mente, sono l’abc del movimento umano. Utili specialmente nella descrizione degli esercizi a corpo libero ed anche con i sovraccarichi.
Benché non occorra essere per forza dei geni in anatomia per allenarsi correttamente, è indubbiamente utile avere nel proprio bagaglio teorico un po’ di nozioni riguardanti almeno i gruppi muscolari più grandi. Buona lettura!
Cenni anatomici sui muscoli pettorali
I muscoli del petto possiamo suddividerli in grande pettorale e piccolo pettorale. L’inserzione del gran pettorale è a livello della cresta e della grande tuberosità dell’omero. Agisce a livello della articolazione scapolo omerale generando abduzione e rotazione della articolazione; è inoltre capace di sollevare il tronco in una azione inspiratoria accessoria.
A sua volta, il gran pettorale è diviso in tre capi:
Clavicolare: si origina dal margine anteriore della clavicola
Sterno-costale: che origina dalla faccia anteriore dello sterno e dalle cartilagini costali (dalla seconda a sesta)
Addominale: che origina dalla parte superiore della lamina anteriore.
Questi tre capi si uniscono in un’unica inserzione omero, sulla cresta del tubercolo maggiore.
Il piccolo pettorale invece, si origina con tre fasci distinti sulla terza, quarta e quinta costola, si inserisce a livello del processo coracoideo della scapola (si tratta di un’altra struttura scapolare mediale all’acromion). La sua funzione principale è quella di abbassare la spalla e sollevare le coste, si tratta pertanto di un muscolo inspiratorio.
Un po’ di muscoli della parte alta del corpo
Quando andiamo a sforzare il petto in un qualsiasi esercizio, inevitabilmente interverranno anche il capo anteriore del deltoide, il tricipite, il gran dentato ed il subclavio. Quando tutto questo insieme di muscoli lavora, inevitabilmente agisce su due grandi strutture articolari: il cinto scapolare (scapola e clavicola) e l’omero.
Biomeccanica di base
In letteratura scientifica è ormai assodato che il gran pettorale abbia all’incirca 42% di fibre muscolari rosse (tipo I) ed il 58% di fibre bianche (tipo II) [1]. La sua funzione principale è quella di addurre e abdurre l’omero, abbassarlo, fletterlo orizzontalmente, intraruotarlo, collocarlo in una posizione di anteposizione e realizzare una flessione sagittale dell’omero.
Illustrazione di alcune delle funzioni del gran pettorale: a = anteposizione dell’omero; b = abbassamento; c = adduzione e abduzione; d = adduzione sul piano sagittale; e = anteposizione (fino a circa 60°); f = intrarotazione; g = flessione orizzontale.
Il piccolo pettorale invece, ha una diversa distribuzione di fibre muscolari: 51% rosse (I) e 49% rapide (II). Le sue funzioni sono in primo luogo il far eseguire delle flessioni orizzontali dell’omero, mettere sempre quest’ultimo in anteposizione, abbassarlo ed estendere le scapole.
Illustrazione di alcune funzioni del piccolo pettorale: a = abbassamento dell’omero; b = anteposizione.
Il deltoide anteriore ha indicativamente un 60% circa di fibre rosse (I) e un 40% di fibre bianche (II). Le sue funzioni più importanti sono quelle di flettere orizzontalmente l’omero e di extraruotarlo.
Il tricipite ha all’incirca il 60% di fibre rosse (I) ed il 40% di fibre bianche (II). Presenta tre capi (lungo, laterale e mediale) ed esercita la sua azione sull’articolazione scapolo-omerale, adducendo ed estendendo l’omero, e l’articolazione del gomito, estendendo l’avambraccio sul braccio.
Il gran dentato ha un grosso predominio di fibre rosse (I), come funzioni base garantisce una flessione orizzontale dell’omero, una sua flessione sagittale, una abduzione scapolare e una rotazione esterna delle scapole.
Il succlavio, come il gran dentato, è composto per lo più da fibre rosse (I) e la sua funzione di maggior importanza è quella di abbassare la clavicola.
Tutte queste nozioni ci serviranno ora per andare ad analizzare i principali esercizi per il petto e per valutare quali possono essere i migliori e perchè.
Breve analisi degli esercizi
Dopo aver osservato le funzioni dei muscoli sui vari piani di movimento, possiamo arrivare a capire che per far lavorare al meglio i pettorali, dobbiamo muovere dei carichi con movimenti di spinta (es. distensioni su panca) e di apertura (es. croci).
Distensioni su panca piana: quando andiamo a eseguire delle distensioni su panca piana, i muscoli che intervengono sono principalmente il grande e piccolo pettorale, il capo anteriore del deltoide ed i tricipiti anche se a voler essere pignoli, i muscoli coinvolti in questo esercizio sono infinitamente di più, la mia è una semplificazione. Nell’esecuzione della panca, l’alternarsi di fase concentrica ed eccentrica, fa addurre ed abdurre il petto. Inoltre la distensione delle braccia garantisce un marcato lavoro del tricipite.
Nella panca piana con bilanciere una presa molto larga diminuisce il range di movimento complessivo, il gomito scende poco sotto la testa dell’omero (scarsa adduzione-abduzione del pettorale) e i tricipiti lavorano meno (ridotto piegamento delle braccia). Viceversa, una presa più stretta aumenta il lavoro dei pettorali (maggior adduzione-abduzione) e coinvolge maggiormente i tricipiti (aumenta il piegamento delle braccia). Pertanto non esiste un soluzione al problema dei tricipiti “rubano” il lavoro al petto, poiché i muscoli lavoreranno molto in entrami i casi. Indipendentemente dalla larghezza della presa, l’esecuzione con bilanciere avrà sempre e comunque un rom (range di movimento) ridotto rispetto a quella con manubri (foto sotto). Inoltre, l’instabilità data dai manubri può aiutare le persone nella propriocezione muscolare, fattore fondamentale per un’ottimale crescita. Di contro però, con il bilanciere, nel tempo, sarà più facile aumentare il sovraccarico (anche se questo è un concetto più per atleti avanzati).
Prima di passare al prossimo esercizio, è bene ricordare un’ultima cosa sulla panca piana: questo, più di altri, non è un esercizio per tutti.
Un soggetto con leve favorevoli (cassa toracica grande, angolo fra sterno e testa omero ampio e linea di trazione del pettorale quasi verticale) riuscirà a sviluppare più forza e ad ottenere una risposta ipertrofica maggiore rispetto a soggetti più gracili e longilinei (illustrazione sotto).
Distensioni su panca inclinata: negli anni se ne sono dette di tutti i colori su di essa, ma attualmente grazie a dei progressi nella letteratura scientifica [2,3], si è scoperto un discreto vantaggio nell’utilizzo di questo esercizio, rispetto alle classiche distensioni in piano, almeno quanto riguarda il reclutamento dei fasci clavicolari (la banale “parte alta” del petto).
Come mostrato nel grafico riportato sopra, i vantaggi ci sono unicamente dai 45° in su, inclinazioni minori della panca stimolano troppo poco questi fasci muscolari.
Distensioni su panca declinata: ottimo esercizio per reclutare tutte le fibre dei muscoli pettorali, è l’esercizio in cui generalmente si carica di più, garantisce quindi un’elevata tensione meccanica nei nostri allenamenti (fattore chiave dell’ipertrofia muscolare).
Dips alle parallele: i dips, o distensioni alla parallele, non si è mai capito se siano più utili allo sviluppo dei pettorali o dei tricipiti. Osservando le nozioni fornite nel precedente paragrafo, possiamo intuire il coinvolgimento del tricipite a causa dell’estensione dell’avambraccio sul braccio (anche se in questo caso sarebbe più appropriato parlare di distensione, dato che le mani si trovano in appoggio su una sbarra). Riguardo al petto invece, il gran pettorale interviene anche’esso nella fase concentrica, essendo un flessore del braccio (con i fasci superiori o clavicolari).
Esistono in realtà due versioni di questo stesso esercizio: le distensioni classiche, con presa stretta e busto piuttosto verticale e le chest dips, con la presa un po’ più larga ed il busto più inclinato in avanti (a voler quasi simulare una panca declinata). In linea del tutto teorica, quelle classiche stimolano soprattutto i fasci clavicolari del gran pettorale, perchè impongono una flessione della spalla da posizione iperestesa. Le chest dips invece, fanno lavorare i fasci inferiori del gran pettorale a causa del movimento di adduzione della spalla.
A voler essere puntigliosi, un vecchio studio tedesco [4] dimostra come scendere oltre l’angolo di 90° nelle dips normali, testa dell’omero che va sotto il gomito, faccia calare l’attivazione del tricipite in maniera abbastanza significativa (-12%), nelle distensioni con presa più larga invece, le chest dips, il calo è molto minore (-3%).
Va infine sottolineato che il materiale scientifico per valutare l’attività elettriomiografica (EMG) dei pettorali nelle distensioni alla parallele è veramente pochissimo. Abbiamo a disposizione un solo studio più o meno attendibile [5], il quale ha evidenziato una marcata attivazione dei fasci inferiori ma purtroppo non specifica nè l’ampiezza della presa, nè l’inclinazione del busto. Va infine aggiunto che le analisi tramite EMG hanno dei palesi limiti.
Croci e aperture ai cavi: sono dei validi esercizi perchè consistono in delle flessioni orizzontali dell’omero. Ripassando quanto detto a inizio articolo, si capisce l’utilità di questi esercizi nell’andare a colpire muscoli come il grande pettorale, piccolo pettorale e deltoide anteriore. Non permettono di caricare molto peso, quindi non vengono scelti come esercizio principale per il petto e con essi si opta per ripetizioni medio-alte. Inoltre, nell’esecuzione con manubri, l’andare ad intraruotare l’omero una volta giunti verso la fine della fase concentrica può essere uno stimolo in più per il muscolo target (gran pettorale). Al contrario, un extrarotazione aumenterebbe solo lo stress al capo anteriore del deltoide.
Nelle croci con manubri, la massima tensione è data dalla forza di gravità, infatti quando l’omero è parallelo al suolo (figura sotto), quindi all’inizio della contrazione concentrica, la tensione è massima. Mentre è prossima allo zero, se i due manubri si trovano in alto, vicini, perpendicolari al suolo (al termine della fase concentrica).
Discorso invece diverso se si opta per la variante ai cavi (fig. sotto), in essa c’è una resistenza data dai cavi “che tirano”, la quale garantirà un coinvolgimento del gran pettorale anche al termine della fase concentrica. Per evitare “pause” durante la contrazione, potrebbe essere sensato preferire le croci ai cavi a quelle con i classici manubri, oppure utilizzare sempre i manubri ma effettuare delle ripetizioni parziali (ROM incompleto).
Dopo tutta questa pappardella risulta chiaro come il voler isolare singole parti del petto, sogno di molti palestrati, sia pura fantascienza e che, a seconda di leve e di altre caratteristiche ereditate geneticamente, certi esercizi non siano ottimali per tutti. L’allenamento va programmato, periodizzato e deve essere necessariamente individualizzato, anche se esistono delle “regole” anatomiche e fisiologiche comuni un po’ a tutti, le quali devono essere rispettate.
Kapandji I. A. – Fisiologia articolare(Monduzzi; 7a ediz., 2007) Beraldo S. – Allenamento muscoli pettorali (2016) Nick Evans – Bodybuilding Anatomy(Calzetti Mariucci, 2008) 1 Bosco C. – La forza muscolare. Aspetti fisiologici ed applicazioni pratiche(Società Stampa Sportiva; 2a ediz., 2002) 2 Trebs et al. – An electromyography analysis of 3 muscles surrounding the shoulder joint during the performance of chest press at several angles (2010) 3 Luczak et al. – Shoulder muscle activation of novice and resistance trained women during variations of dumbbell press exercise (2013) 4 Boeckh-Behrens W. et al. – Fitness-Krafttraining:die besten Übungen und Methoden für Sport und Gesundheit (2000) 5 Contreras B. – Inside the Muscles: Best Chest and Triceps Exercises (2010)