Tag: epo

  • Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!

    phpThumb_generated_thumbnailjpg

    Cos’è l’EPO?

    Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.

    Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.

    N.B:  benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).

    TYP-466793-3082397-globuli-rossi

    Come incrementare i livelli di EPO

    Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].

    Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.

    Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.

    Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.

    Capture11

    Risposte fisiologiche e adattamenti all’allenamento ad alta quota

    La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].

    Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].

    *Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.

    In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].

    Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2,  questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.

    altaquota_07

    La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.

    Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].

    Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.

    Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.

    Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.

    Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.

    “La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione.
    Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.

    Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.

    L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].

    Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.

    Capture

    Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.

    Sulla questione muscolare non si sa molto altro.

    Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).

    Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:

    • diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
    • aumento del nervosismo;
    • peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
    • calo delle capacità coordinative;
    • aumento dei disturbi del sonno.
    61875780
    Applicazioni pratiche

    Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?

    L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.

    Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che  dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.

    Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.

    Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.

    In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.

    Allenarsi in alto e gareggiare in basso

    Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.

    Allenarsi in basso e gareggiare in alto (live high and train low)

    Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.

    Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].

    Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).

    F2.large
    Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]

    Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.

    Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.

    Controindicazioni più e meno gravi dell’allenamento in altura
    • Scottature solari e oftalmia delle nevi;
    • irritazioni delle vie respiratorie;
    • mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
    • edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
    • edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
    • emorragia retinica (si verifica dai 6000 m in poi).
    Due parole sulla training mask (TM)

    4a7bfe9d-8041-4589-8d9f-f38cc6471bfeNegli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.

    Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.

    A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).

    An external file that holds a picture, illustration, etc.Object name is jssm-15-379-g002.jpg
    Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]

    “Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro:
    – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici.
    – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%).
    – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta.
    – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti).
    – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].

    Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).

    Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].

    Conclusioni

    Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.

    Grazie per l’attenzione.


    oc
    Bibliografia

    Willmore H. J., Costill L. D. –  Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005)
    Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017)
    Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016)
    1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991)
    2 Strømme A. B. – Training at altitude (1980)
    3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983)
    4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007)
    5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996)
    6 Schoene et al. – Limits of human lung function at high altitude (2001)
    7 E. R. Buskirk et al. –  Maximal performance at altitude and on return from altitude in conditioned runnerd (1967)
    8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate
    9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975)
    10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967)
    11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967)
    12 Schmitt et al. –  ??? (2008) fonte primaria errata sul libro di riferimento
    13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000)
    14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001)
    15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004)
    16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989)
    17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988)
    18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005)
    19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973)
    20 Chapman et al. – Individual variation in response to altitude training (1998)
    21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002)
    22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016)
    23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016)
    24 Ness J. – Is live high/train low the ultimate endurance training model?

  • EPO: dalla fisiologia al suo utilizzo nello sport

    EPO: dalla fisiologia al suo utilizzo nello sport

    Tanti, troppi parlando di doping si mettono in bocca la parola EPO ma pochi in realtà sanno di cosa si tratti. Buona lettura!

    EPO

    L’acronimo EPO non é altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale é la regolazione dell’eritropoiesi, cioé la produzione dei globuli rossi da parte del midollo osseo.

    L’esistenza di  (altro…)

  • Ormoni androgeni: fisiologia di base, benefici ed effetti collaterali

    Ormoni androgeni: fisiologia di base, benefici ed effetti collaterali

    Testosterone-from-xtal-3D-balls

    Dopo un paio di articoli introduttivi, si passa ora ad un piatto caldo: gli ormoni androgeni. Buona lettura!

    Gli ormoni androgeni sono una classe di ormoni deputati alla formazione e al mantenimento delle caratteristiche sessuali maschili. Si distinguono dagli steroidi anabolizzanti per il semplice fatto di interferire con l’accrescimento di più organi e tessuti, questo perché gli steroidi anabolizzanti sono sostanze sintetiche, simili agli ormoni androgeni, in grado di mimarne gli effetti ma con la differenza di essere coinvolti solamente nello sviluppo del tessuto muscolare (anabolismo delle proteine contrattili). Tutti gli ormoni appartenenti a questo raggruppamento sono prodotti a partire dal colesterolo.

    L’androgeno per eccellenza é il testosterone, a partire dall’età puberale la sua produzione (endogena) schizza alle stelle, per poi stabilizzarsi intorno ai 5-7 mg/dì. In seguito, superati i 35 anni circa la sua produzione lentamente cala.

    pic 28
    Maturazione di un soggetto maschile col passare del tempo, da evidenziare é l’enorme picco ormonale che si raggiunge in concomitanza dell’adolescenza

    I principali ormoni androgeni sono sei: deidroepiandrosterone (DHEA), androstenedione, androstenediolo, androsterone, diidrotestosterone (DHT) e testosterone. Sono fortemente legati l’uno all’altro, basti pensare all’androstenediolo prodotto dal DHEA o dal DHT, metabolita del testosterone.

    Ora, descriveró brevemente i primi cinque per soffermarmi poi sul più importante, il testosterone.

    • Deidroepiandrosterone (DHEA): viene prodotto dalle ghiandole surrenali ed è il principale ormone maschile presente nelle donne, precursore tral’altro degli estrogeni e associato ad un ipotetico incremento dell’IGF-1 e ad una riduzione del catabolismo indotto dal cortisolo.
    • Androstenedione: é prodotto dai testicoli, ghiandole surrenali e ovaie. Viene convertito metabolicamente in testosterone.
    • Androstenediolo: prodotto dal deidroepiandrosterone, l’organismo lo converte in testosterone.
    • Androsterone: il fegato lo produce metabolozzando il testosterone, ha una debole attività androgena.
    • Diidrotestosterone (DHT): é un metabolita del testosterone, per azione dell’enzima 5α-reduttasi viene prodotto soprattutto nei testicoli e nella prostata. É molto attivo grazie alla sua affinità con il recettore degli androgeni.
    • Testosterone: é il più importante ormone maschile e viene prodotto nei testicoli dalle cellule di Leyding. Da esso, tramite l’enzima aromatasi vengono prodotti gli estrogeni, grazie a un’azione aromatizzante, la quale produce un anello aromatico (particolare costruzione molecolare). Questo ormone regola l’intero apparato riproduttore maschile e aiuta nello sviluppo delle caratteristiche maschili secondarie (crescita della barba, timbro vocale, sviluppo della muscolatura ecc.).

    Buona parte del testosterone presente nel nostro corpo é inattivo perché legato a due particolari proteine di trasporto: l’albumina (60%) e la SHGB (sex hormone-binding globulin, 38%). Solo la forma libera del testosterone, 2% circa, é attiva. Ed è anche per questo motivo che gli studi scientifici che mostrano un aumento del solo testosterone totale, misurato in nanogrammi (ng), hanno una valenza relativa. Quello che più interessa a noi è la forma libera!

    L’azione degli androgeni prodotti dal corpo deriva dalla loro conversione proprio in testosterone e dall’azione del DHT, suo derivato. Inoltre, gli androgeni favoriscono il dimagrimento, limitando lo stoccaggio di grasso negli adipociti e attivando la lipolisi (producendo recettori β-adrenergici sulle cellule del grasso, ove interviene l’adrenalina). Tutti gli ormoni androgeni vengono metabolizzati dal fegato ed eliminati dai reni. Questi ormoni sono in grado di attraversare le membrane cellulari (sostanze lipofile). Gli androgeni agiscono legandosi ai propri recettori presenti nelle cellule dei vari tessuti. Dopo aver “legato” il recettore, grazie ad una complicata serie di reazioni biochimiche, si arriva a produrre nuove proteine. Il tessuto muscolare, specialmente quello delle spalle (deltoidi) é ricco di recettori androgeni che, una volta attivati, stimolano la sintesi di nuove proteine contrattili (ipertrofia miofibrillare), incrementando la massa muscolare e la forza della persona in questione.

    Rintracciabilità del testosterone

    Il testosterone raramente viene utilizzato nei pressi delle competizioni, periodo in cui é più probabile ricevere visite dall’anti-doping. Puó essere infatti trovato nelle analisi delle urine anche per molti mesi. Di seguito vi elenco alcune sue forme modificate sinteticamente, con la relativa rintracciabilità.

    • Testosterone in sospensione: in questa particolare forma, il testosterone è sospeso in acqua, quindi dopo l’iniezione entra rapidamente in circolo e viene metabolizzato in pochissimo tempo. Questa forma, attiva per circa 24 ore, deve essere iniettata giornalmente se si vogliono mantenere stabili i livelli di testosterone. I dosaggi medi utilizzati dagli sportivi sono compresi tra i 25 e i 100 mg/dì. Questa forma in sospensione ha il vantaggio di essere rintracciabile per pochi giorni.
    • Testosterone decanoato: in questa forma il testosterone viene rilasciato assai lentamente, é attivo per circa 20 giorni e rintracciabile nelle urine per oltre 3 mesi.
    • Testosterone cicloesilpropionato: questa esterificazione rilascia il testosterone in una decina di giorni o poco più ed è rintracciabile per 3 mesi circa.
    • Testosterone propionato: questo tipo di testosterone viene rilasciato abbastanza rapidamente, é attivo per 2-3 giorni ed è rintracciabile per 3 settimane circa. Gli atleti mediamente ne assumono 50-100 mg ogni 2 giorni.
    • Testosterone fenilpropionato: il testosterone in questa forma ha un’attività di circa 5 giorni.
    • Testosterone eptilato: forma di testosterone attiva per 20 giorni.
    • Testosterone enantato: la forma enantata é probabilmente la più utilizzata nello sport, é attiva per circa 15 giorni ed é rintracciabile dai test anti-doping per 3 mesi. Gli atleti ne possono assumere dai 100 ai 2000 mg a settimana.
    • Testosterone cipionato: é attivo per 15-16 giorni e rintracciabile per 3 mesi.
    • Testosterone undecanoato iniettabile: é attivo per 30 giorni e viene trovato nelle urine fino a 4 mesi dalla sua assunzione.
    Ma come funzionano le analisi?

    C’è un parametro per valutare se un atleta, almeno sulla carta, è dopato o no, si tratta del rapporto fra testosterone ed epitestosterone nelle urine (T/E ratio). L’epitestosterone è uno steroide antiandrogeno endogeno, epimero del testosterone.

    In una persona normale il rapporto fra questi due dovrebbe essere all’incirca di 1:1. Per il Comitato Olimpico Internazionale è tollerato un rapporto fino a 4:1 e per la Commissione Atletica del Nevada, la più importante fra le commissioni atletiche, addirittura di 6:1, oltre queste soglie gli atleti sono considerati dopati a causa dei livelli di testosterone troppo elevati.

    Testosterone : Epitestosterone (T/E)
    COI → 4:1
    Comm. Atl. Nevada → 6:1
    001 - Copy
    Rappresentazione della concentrazione di testosterone in due diversi campioni (A e B) rilevata tramite la gascomatografia-spettrometria di massa (gc/ms). Il campione A (sinistra) è negativo visto il quoziente T/E di 1,65:1. Il campione B invece è palesemente positivo (14,5:1).
    Controllo degli estrogeni e del cortisolo

    Gli estrogeni sono gli ormoni sessuali femminili, sono endogenamente prodotti a partire dal testosterone, attraverso l’azione dell’enzima aromatasi. L’estrogeno più importante è l’estradiolo, il quale interferisce con la regolazione e produzione del testosterone attraverso un intricato meccanismo di “feed-back negativo”. É bene sottolineare che una concentrazione troppo elevata di estradiolo, derivante da un incremento dei livelli di testosterone scaturito dall’assunzione di farmaci, ostacoli la naturale produzione del testosterone stesso.

    Una eccessiva produzione di estrogeni puó portare a ginecomastia, ritenzione idrica, insulinoresistenza, accumulo di adipe. Per sviare a questi problemi vengono utilizzati dei farmaci detti appunto antiestrogeni. Gli antagonisti degli estrogeni sono utilizzati in abbinamento a cicli di steroidi anabolizzanti per contenere questi effetti indesiderati. Pertanto sono considerati anch’essi doping. I principali farmaci utilizzati come antiestrogeni sono il Nolvadex (tamoxifen citrate) e il Clomid (clomiphene citrate) ma la lista di farmaci é veramente molto ampia, essi sono suddivisi in due categorie: SERM (modulatori selettivi dei recettori di estrogeni) ed in AI (inibitori aromatasi). “Il Clomid ha maggiore potere sull’asse ormonale di quanto non lo abbia il Nolvadex. Tuttavia, il Tamoxifen ha un maggior potere anti-estrogeno e garantisce migliore prevenzione di effetti colletareli come ginecomastia da rebound” [13].

    Va specificato che, almeno in questo caso, non vale il ragionamento “minor dosaggio uguale minor danno”, infatti anche dosi sotto fisiologiche di ormoni estrogeni portano a problemi di salute e performance.

    Gli antiestrogeni solitamente sono utilizzati dopo la fine di un ciclo di steroidi, nella celebre PCT (Post Cycle Therapy). Ad esempio in un ciclo della durata totale di 10 settimane, sarà seguito da una PCT di 4-6 settimane, nella quale si assumerà del Nolvadex. Generalmente il dosaggio di quest’ultimo é il seguente: 20-30 mg/dì. Alle volte però, i culturisti, invece che limitarsi a scegliere un farmaco fra il Nolvadex ed il Clomid, li assumono entrambi, ovviamente a dosi inferiori (spesso dimezzate).

    Dopo la fine di un ciclo di steroidi e dopo la PCT, per assicurarsi che l’asse ormonale torni ad essere efficiente, come lo era prima di iniziare a doparsi, ci si prende un periodo di pausa. Generalmente questa pausa dura tante settimane, quante sono state quelle dei due cicli (steroidi + PCT). Come per esempio riportano quelli di chemicalbuilding.com, se il ciclo di steroidi è durato 10 settimane e la PCT 4, il periodo di pausa avrà una durata totale di 14 settimane (10+4).

    Oltre agli estrogeni, chi si dopa deve tener conto del cortisolo, l’ormone dello stress. Infatti, una delle reazioni fisiologiche del nostro corpo alle dosi esogene di steroidi, è proprio l’innalzamento dei livelli di questo ormone, che tra l’altro è l’antagonista proprio del testosterone. Oltre a effetti come il nervosismo, il cortisolo è responsabile del catabolismo dei tessuti. Quest’ultimo va assolutamente limitato, perché altrimenti rischierebbe di mandare in fumo buona parte dei risultati ottenuti. Per mantenere dei livelli di cortisolo relativamente bassi, si possono assumere sostanze (legali) come la vitamina C e antiossidanti, ad esempio, il magnesio, lo zinco, la vitamina D e la vitamina E.

    Chiaramente l’assunzione di farmaci antiestrogeni é più o meno importante, a seconda che i farmaci anabolizzanti/androgeni siano o meno aromatizzati.

    eg0706676001.jpeg
    Effetti di un trattamento di 10 giorni di anastrazolo, un farmaco antiestrogeno, alla dose di 0,5 e 1 mg/giorno sui livelli di estrogeni (estradiolo) e testosterone. Come evidenziano i grafici, l’effetto del farmaco sull’estradiolo (A) e sul testosterone (B) è inversamente proporzionale (meno estrogeni e più anabolismo) [8].
    Benefici del testosterone

    Cambiamenti apprezzabili, soprattutto per gli sportivi, sono l’aumento della massa eritrocitaria (ciò può aumentare la capacità di trasporto di ossigeno nel sangue, maggior vascolarità e pienezza muscolare), incremento della forza, della massa muscolare ed il miglioramento della trasmissione neuromuscolare, i tempi di reazione sono quindi ridotti [1,2]. Riguardo al primo aumento occorre tuttavia fare una precisazione: la cosa é positiva ma fino a un certo punto. “Avere  troppi  globuli  rossi  per  periodi  di  tempo prolungati  incrementa  il volume  ematico  al  punto  tale  da rallentare la circolazione.  Ciò  incrementa  la  probabilità  di  coaguli  di sangue  e perciò  incrementa  anche  la  possibilità  di  ictus  e  infarti.  Per prevenire  tale  circostanza,  in  casi  in cui  il  problema  potrebbe persistere  nonostante  l’utilizzo  di  alte  dosi  di  Omega-3,  o  nel  caso in  cui  gli  esami del  sangue  avessero  mostrato  alterazioni significative,  l’utilizzo  di  100mg/die  di  Cardio  Aspirina  sono consigliati.  Gli AAS* che  più  incidono  in  questo  senso  sono  il Boldenone, Oxymetholone e  Trenbolone” [3]. Il testosterone favorosce la crescita tessutale non solo a livello muscolare ma anche osseo (mineralizzazione). Inoltre, attenua dolori articolari favorendo il recupero dagli infortuni.

    Oltre che negli sport estetici (bodybuilding), il testosterone e molti altri AAS possono venire utilizzati in sport di forza rapida, dati i miglioramenti nella velocità di movimento [9,10]. Inoltre, queste sostanze possono avere risvolti interessanti anche per gli atleti praticanti discipline di resistenza, ricollegandoci alla questione EPO (precedentemente citata) e all’ottimizzazione delle capacità di recupero [11].

    *steroidi androgeni anabolizzanti

    Bhasin
    Effetti di 16 settimane, 113 giorni per la precisione, di trattamento col testosterone su giovani uomini in salute. E’ facile notare come gli effetti positivi siano direttamente proporzionali al dosaggio. Vanno evidenziati i peggioramenti riscontrati con dosaggi particolarmente bassi (25 mg a settimana), segno che probabilmente sono sufficienti unicamente a sopprimere la produzione endogena di testosterone (l’organismo non riesce ad usufruire della bassa dose esogena assunta) [6].

    nejm199607043350101_f1.jpeg
    Come sopra, ma questa volta le settimane sono 10 e ci sono 4 gruppi di “cavie”, due che non si allenano (uno che assume testosterone enantato e uno solo placebo) e due che si allenano (sempre con un gruppo placebo e uno no). Entrambi i gruppi di “dopati” assumevano ben 600 mg/week. Entrambi i gruppi hanno avuto significativi aumenti in forza e massa muscolare, i quali ovviamente sono stati massimizzati nel gruppo che si è anche allenato con i pesi. Per quanto riguarda i gruppi placebo ci son stati sia miglioramenti che peggioramenti, eccetto per quanto riguarda la forza nelle “cavie” allenate (aspetto nervoso) [7].

    Vantaggi cronici?

    Spesso capita di sentire gente proporre squalifiche a vita per atleti dopati, invece che di uno o due anni, questo anche perché le sostanze dopanti, AAS in primis, sembrerebbero dare considerevoli vantaggi organico-muscolari anche molti anni dopo aver smesso di assumerli.

    Quando una persona normale smette di allenarsi, la dimensione delle fibre muscolari cala ma il numero dei myonuclei, nuclei delle cellule muscolari, resta quasi completamente invariato. Non è ancora stato chiarito definitivamente per quanto questo numero resti invariato, si crede lo resti per parecchi anni. Gli allenamenti che causano danno meccanico ai muscoli, in primis quelli con i sovraccarichi, stimolano lo sviluppo di nuovi myonuclei per differenziazione delle cellule satelliti.

    Gli AAS riescono a stimolare la proliferazione e la differenziazione delle cellule satelliti, con conseguente aumento a dismisura dei myonuclei (quantità inimmaginabili per le persone non dopate).

    F4.large
    Come mostra lo schema, grazie all’allenamento le cellule satelliti “donano” nuovi myonuclei alla fibra muscolare, la quale cresce (ipertrofia). Una volta abbandonato per parecchio tempo l’allenamento, la fibra muscolare diventa più piccola (atrofia) ma mantiene un buon numero di myonuclei che, una volta ripresi gli allenamenti, aiuteranno la fibra ad ipertrofizzarsi in tempi relativamente brevi.

    Infatti, come mostrato in questo studio [12], atleti che per anni smettono di utilizzare steroidi anabolizzanti risultano avere un numero di myonuclei per ogni singola fibra muscolare piuttosto elevato, paragonabile a quello degli sportivi sotto ciclo e molto superiore a quello dei soggetti rimasti sempre “puliti”.

    Per ulteriori approfondimenti clicca qui.

    Effetti collaterali

    Attenzione peró, non é tutto oro ció che luccica! Benché basse dosi di AAS minimizzino gli effetti collaterali, il pericolo é sempre dietro l’angolo. I principali effetti indesiderati derivanti dalla loro assunzione sono:

    • Acne
    • Ginecomastia
    • Atrofia testicolare
    • Cardiomiopatia
    • Dolore al sito di iniezione [4]
    • Virilizzazione nelle donne
    • Ipertrofia del clitoride
    • Atrofia mammaria
    • Irregolarità mestruali
    • Alopecia androgenetica
    • Modificazione del tono della voce [5]
    • Aumento dell’aggressività
    • Depressione [14]
    • Arresto cardiaco
    Ai singoli l’ardua sentenza

    Non voglio intraprendere discorsi etici o prender parte alla guerra natural vs dopati, i mezzi di informazione ci sono e voi che passate al lato oscuro della forza sapete a cosa andate incontro, nel bene e nel male.

    Questo articolo é a scopo puramente divulgativo, quanto riportato sopra é da considerarsi libera informazione e non vuole invitare in alcun modo le persone ad assumere sostanze che ricordo essere dannose e illegali.


    Bibliografia

    1 Coviello A. et al. – Effects of Graded Doses of Testosterone on Erythropoiesis in Healthy Young and Older Men (2008)
    2 Blanco et al. – Neuroscience (1997)
    3 Bodybuilding HIT – Steroidi anabolizzanti, guida all’uso educativo (2014)
    4 Bolding et al. – Addiction (2002)
    5 Jones E. – Androgenic effects of oral contraceptives: implications for patient compliance (1995)
    6 Bhasin S. et al. – Testosterone dose-response relationship in healthy young men (2001)
    7 Bhasin S. et al. – The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men (1996)
    8 Mauras N. et al. – Estrogen suppression in males: metabolic effects (2000)
    9 BoscoC. et al. – Zum Verhältnis von Muskelkraft und Testosteron aus der Sicht des Trainings (1997)
    10 Bosco C. et al. – Relationships between field fitness test and basal serum testosterone and cortisol levels in soccer players (1996)
    11 Kern J. – Das Dopingproblem (2002)
    12 Eriksson A. et al. – Skeletal muscle morphology in power-lifters with and without anabolic steroids (2005)
    13 Costantini M. – PCT (Post Cycle Therapy) – Come, Quando e Perché (2017)
    14 Gideon Nave et al. – Single-Dose Testosterone Administration Impairs Cognitive Reflection in Men (2017)
    Sacchi N. – Doping e farmaci nello sport (Nonsolofitness, 2014)
    Lanfranco F. et al. – Hormone Use and Abuse by Athletes (2012)
    Aversano D. – Steroidi crescita e memoria muscolare: vantaggi perenni? (2016)
    Gundersen K. et al. – Muscle memory and a new cellular model for muscle atrophy and hypertrophy (2016)
    Sinha-Hikim I. et al – Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy (2002)

  • Allenarsi ad alta quota: guida completa

    Allenarsi ad alta quota: guida completa

    Non è raro, fra internet e televisione, vedere atleti dei più svariati sport allenarsi appositamente in zone parecchio sopra il livello del mare (+1500 m). Ora, in questo articolo, andremo a vedere le risposte fisiologiche e gli adattamenti indotti dall’allenamento svolto a determinate altezze.

    allenamento7.jpg

    Vi avviso: sono argomenti abbastanza complessi, quindi un po’ noiosi, ma é fondamentale saperli se si vuole essere ben informati su i pro e i contro di certe scelte sportive.

    Un’attività fisica può  (altro…)