Tag: ossigeno

  • Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    Aumentare l’EPO in maniera naturale: teoria, consigli pratici e mode

    E’ possibile incrementare l’EPO, e quindi la capacità di trasporto dell’ossigeno, in maniera naturale, senza ricorrere all’utilizzo di farmaci dopanti? La risposta è sì, ora scopriamo come!

    phpThumb_generated_thumbnailjpg

    Cos’è l’EPO?

    Come già ampiamente spiegato in un altro articolo, l’acronimo EPO non è altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale è la regolazione dell’eritropoiesi, cioè la produzione dei globuli rossi da parte del midollo osseo.

    Andando un po’ più nello specifico, l’EPO umana presenta una catena di 165 aminoacidi con tre N-glicosilazioni ed una O-glicosilazione, invece l’eritropoietina di sintesi, per quanto riguarda le dimensioni, il numero complessivo, il grado di ramificazione e la posizione delle glicosilazione, differisce un po’ da quella umana. Viene somministrata tramite iniezioni sottocutanee o endovenose, in medicina è utilizzata per trattare numerose forme di anemia e sembra avere effetti positivi anche sulla salute di alcuni organi interni.

    N.B:  benché abbia a che fare con l’ossigeno e l’acronimo sia simile, l’eritropoietina non va confusa con l’EPOC (aumento del consumo di ossigeno post allenamento).

    TYP-466793-3082397-globuli-rossi

    Come incrementare i livelli di EPO

    Solo a scopo informativo, ricordiamo che l’EPO è utilizzata a fini dopanti, quindi illegalmente, per incrementare il trasporto di ossigeno, un fattore importantissimo in molti sport, soprattutto quelli di endurance. L’assunzione di eritropoietina alza il VO2max, la soglia lattacida e migliora la respirazione cellulare. È quindi facile intuire come la sua utilità sia maggiore negli sport di resistenza. I primi a notare gli effetti di questo ormone sulla performance sportiva furono gli studiosi Ekblom e Berglund nei primi anni 90, riconducendo le somministrazioni di eritropoietina (20-40 IU/kg alla settimana) ad un notevole aumento del massimo consumo di ossigeno (VO2 max) [1].

    Ma ora veniamo al punto forte: l’EPO è aumentabile in via naturale (e legale), senza rischi per la salute, svolgendo degli allenamenti ad alta quota. Un’attività fisica può considerarsi a tutti gli effetti ad alta quota quando si svolge oltre i 1500 metri, dato che a quote inferiori non sono mai stati evidenziate variazioni significative sulla prestazione.

    Indipendentemente che uno si trovi al livello del mare o sull’Everest, la miscela di gas da cui è composta l’aria che respira è identica (la sua composizione varia superati i 13.500 m), cambia unicamente la pressione parziale dei singoli gas. Inoltre, ogni 150 metri circa, in altezza, la temperatura aumenta di 1°C.

    Anche se scontato, va ricordato che l’umidità e l’altitudine sono inversamente proporzionali. Questo, nell’immediato, può portare alla secchezza ed irritazione delle mucose e delle pareti degli alveoli. Tuttavia, dopo tre settimane di “adattamento” l’organismo mette in atto dei sistemi di difesa, migliorando la vascolarizzazione delle mucose. Anche per i motivi sopraelencati, gli sportivi che si allenano e gareggiano ad alte quote hanno un maggior bisogno di acqua per compensare le ingenti perdite idriche del proprio organismo, specialmente per quanto riguarda gli sport di endurance.

    Capture11

    Risposte fisiologiche e adattamenti all’allenamento ad alta quota

    La pressione parziale di ossigeno (PO2) diminuisce sempre di più a certe altezze, ciò determina una minore pressione d’ossigeno negli alveoli polmonari, ne consegue una minore saturazione d’ossigeno del sangue arterioso. Tutto questo porta ad una diminuzione del VO2 max (massimo consumo di ossigeno), quindi un ostacolo per le prestazioni di resistenza. Ad un’altezza superiore a 1500 metri il VO2 max diminuisce del 10% ogni 1000 m di quota [2,3].

    Più si è lontani dal livello del mare e più, a riposo, la forza della muscolatura respiratoria diminuisce [4]. Sotto sforzo la stessa cosa vale per il diaframma [5]. Entrambi i casi sono una conseguenza dell’ipossia* e dall’iperventilazione causata dall’altitudine, dato che il minor rifornimento di ossigeno diminuisce l’apporto di energia alla muscolatura [6].

    *Insufficiente presenza di ossigeno nei tessuti, dovuta a scarso apporto o a una sua mancata utilizzazione.

    In alta quota l’aria è meno densa, perciò la ventilazione polmonare aumenta (sia a riposo che sotto sforzo). Di conseguenza, la quantità di anidride carbonica negli alveoli viene ridotta e aumenta la diffusione del sangue verso i polmoni, tramite i quali la CO2 verrà eliminata. La maggior eliminazione dell’anidride carbonica porta ad un alcalosi respiratoria, con aumento del ph ematico, allora i reni intervengono aumentando l’escrezione di ioni bicarbonato (tamponatori dell’acido carbonico formatosi dalla CO2). Questo passaggio finale, diminuisce la capacità del sangue di tamponare i prodotti acidi del metabolismo, così, in altitudine, peggiora la trasformazione di energia per via anaerobica [7].

    Con l’abbassamento della già citata pressione parziale dell’ossigeno, PO2,  questo si riflette anche nella PO2 degli alveoli e nei capillari polmonari. Allo stesso tempo cala anche la saturazione dell’emoglobina (dal 98% al livello del mare passa a 92% se ci troviamo a 2439 m). Mentre la PO2 arteriora diminuisce con l’altitudine, la PO2 dei tessuti rimane praticamente invariata, almeno fino ad altezze ragionevoli (circa 2500 m), quindi la differenza fra queste due (gradiente di pressione), viene drasticamente ridotta. Il passaggio dell’ossigeno dal sangue ai tessuti dipende proprio da questo gradiente di pressione. L’abbassamento della pressione parziale d’ossigeno arteriosa è uno dei maggiori responsabili del calo del VO2max in alta quota.

    altaquota_07

    La diminuzione del massimo consumo di ossigeno inizia ad essere rilevante dopo i 1500-1600 metri, quando la PO2 atmosferica scende sotto i 125 mmHg (millimetri di mercurio). Dai 1600 metri in poi il VO2max cala di circa l’8-11% ogni singolo km di altezza.

    Nella figura a sinistra è illustrata la capacità aerobica di prestazione espressa attraverso il VO2max [3].

    Vecchi studi [9,10,11] evidenziavano come la permanenza a certe altitudini riusciva a far sviluppare al corpo una certa tolleranza all’ipossia. Dopo un periodo compreso fra i 18 e 57 giorni, i soggetti che già in passato erano stati esposti a condizioni analoghe, dopo il calo iniziale del VO2max, avevano un discreto miglioramento di questo parametro, inoltre la loro capacità aerobica rimaneva invariata.

    Ma in ogni caso, anche con una certa acclimatizzazione, il massimo consumo di ossigeno in quota non sarà mai paragonabile a quello in prossimità del livello del mare.

    Per adeguarsi alle variazioni del sistema respiratorio anche quello cardiovascolare subisce delle modifiche. Infatti, già nelle prima 24-48h di permanenza a certe altezze, si verifica una riduzione del volume plasmatico del 25%, queste principalmente perchè ad alte quote c’è una certa perdita di acqua attraverso la respirazione. Tuttavia, in cronico, l’organismo mette in atto una serie di adattamenti che portano ad un aumento della massa ematica, con la quale il corpo riesce, almeno parzialmente, a compensare la riduzione della PO2 dovuta all’alta quota.

    Ma non finisce qui! Anche la gittata cardiaca, prodotto del volume di scarica sistolica per la frequenza cardiaca, subisce dei cambiamenti.

    “La risposta immediata in seguito all’esposizione all’alta quota consiste in un aumento della gittata cardiaca a parità di carico submassimale rispetto al livello del mare, tuttavia, questa risposta tende a spegnersi nel corso dei giorni e settimane di acelimatazione.
    Il processo è da attribuire alla riduzione della gittata pulsatoria che progressivamente si instaura con l’esposizione all’alta quota. Riducendosi la gittata cardiaca, a parità di consumo di ossigeno, si verifica una maggior differenza artero-venosa in ossigeno. In una certa misura, la riduzione della gittata sistolica (pulsatoria) viene compensata da un aumento della frequenza cardiaca (fc) a ogni lavoro subi-massimale. In effetti, si è riscontrato che anche in vetta all’Everest. e quindi a gradi estremi di ipossia, il cuore mantiene intatta la sua capacità contrattile e la sua ritmicità” [8]. Discorso un po’ diverso invece per gli sforzi di intensità massimale. Per lavori di questo tipo, svolti ad alta quota, si verifica sia una riduzione della massima fc e del massimo volume di scarica sistolica. Il primo fattore è legato al SNC ed il secondo al repentino calo del volume plasmatico, di conseguenza, pure la gittata cardiaca ha un peggioramento (affinchè questo sia rilevante bisogna essere a circa 3000 m). A tutto ciò si aggiunge la riduzione del gradiente di diffusione, quest’ultimo facilità il passaggio dell’O2 dal sangue ai muscoli. Risulta quindi chiaro il perchè del peggioramento delle prestazione aerobiche quando si è ad alta quota.

    Come sappiamo però, il corpo umano è una macchina meravigliosa, anche in situazioni ostiche, col tempo, è in grado di adattarsi e migliorare. Infatti, dopo una permanenza di circa 6 mesi a quota 4000 m, la massa del sangue (volume ematico) aumenta del 9-10%, questo a causa di una maggior produzione di globuli rossi (indotta dall’altitudine) e di un’espansione del volume plasmatico, inizialmente ridotto del 25% circa.

    L’allenamento in altitudine, fra le altre cose, modifica la variabilità della frequenza cardiaca (HRV, Heart Rate Variability). Ricerche di qualche anno fa [12] mostrano un cambiamento considerevole dell’HRV dopo numerosi allenamenti in ipossia effettutati durante 18 giorni. Inoltre, un aumento globale dell’HRV è associato ad una diminuzione della fc a riposo e ad una più elevata capacità di prestazione sportiva [13,14,15].

    Riguardo invece agli adattamenti muscolari, purtroppo in letteratura scientifica non è presente moltissimo materiale. Nella tabella sottostante sono illustrate le variazioni muscolari e metaboliche avvenute durante uno studio del 1992 (D. L. Costill et al. dati non pubblicati), durante il quali le cavie umane scalarono l’Everest ed il Monte Denali. L’unico aumento riscontrato è stato quello dei capillari per mm2, dovuto al bisogno dell’organismo di apportare un maggior quantitativo di sangue e ossigeno ai muscoli. I pochi dati che ci mette a disposizione questo studio, in ogni caso, sono molto ambigui: le diminuzioni raffigurate nella tabella sotto sono benissimo riconducibili alla perdita di appetito che si verifica in in alta quota (deficit calorico). Inoltre, al perdita di peso di alcuni scalatori (fino a 6 kg) è attribuibile alla disidratazione corporea, soprattutto a livello extracellulare.

    Capture

    Informazioni venute fuori negli anni successivi, hanno mostrato che dai 2500 m in su, dopo alcune settimane il potenziale metabolico dei muscoli si riduce. In più, ad altezze ancora maggiori sembrerebbe ridursi l’attività mitocondriale e degli enzimi glicolitici (sono quindi limitati i processi biochimici come la fosforilazione ossidativa). Va ricordato anche che a causa del potenziale stress causato dalle condizioni climatiche ostiche, potrebbero essere alti i livelli di cortisolo, ormone legato al catabolismo.

    Sulla questione muscolare non si sa molto altro.

    Dal momento che il trasporto di ossigeno ad alta quota è ostacolato (ipossia), diminuisce anche la capacità ossidativa dell’organismo, quest’ultimo allora deve puntare alla produzione di energia per via anaerobica. Ciò, ovviamente, assicura dei livelli di lattato ematico più alti durante sforzi di intensità sub-massimale. Durante sforzi massimali invece, non si verifica la medesima cosa, per essi l’accumulo di acido lattico nei muscoli e sangue risulta essere più basso [16,17], questo probabilmente per l’incapacità dell’organismo di tollerare carichi di lavoro troppo intensi e/o per la riduzione della capacità glicolitica dei muscoli (limitata dall’intolleranza nei confronti dell’accumulo di H+).

    Oltre ad un calo della performance, viene intaccata anche la capacità funzionale del SNC. Il cervello con una carenza di ossigeno va in ipossia, perciò, in altitudine si va incontro a ciò che segue:

    • diminuzione della capacità di pensiero analitico, della capacità di presa di decisione e di giudizio;
    • aumento del nervosismo;
    • peggioramento delle prestazioni sensoriali (a causa dell’ipossia diminuisce l’accuratezza visiva);
    • calo delle capacità coordinative;
    • aumento dei disturbi del sonno.
    61875780
    Applicazioni pratiche

    Dopo tutte queste belle nozioni teoriche è giunto il momento di passare alla pratica. Se si vuole aumentare l’EPO, come bisogna organizzare un training camp?

    L’altitudine più favorevole per i training camp è quella compresa fra i 2000 e 3000 metri, la quale corrisponde ad una riduzione dell’ossigeno disponibile dal 16 al 24% [18]. Ad una quota inferiore ai 1800 m gli adattamenti fisiologici ci sono ma sono troppo deboli per consentire un tangibile miglioramento prestativo. Al contrario, con ad altezze troppo elevate (+3000 m) le condizioni diventano veramente troppo ostiche per consentire l’ottenimento di risultati, si rischia così un decremento della performance.

    Il grosso degli adattamenti avviene entro due settimane dall’arrivo in alta quota, quindi una permanenza di 2-3 settimane, abbinata ai giusti allenamenti, è considerata ottimale per ottenere i risultati sperati [18]. Infatti, sembrerebbe che  dal 22° giorno di permanenza in poi le prestazioni degli atleti comincino ad avere dei discreti cali [19]. In più, almeno per quanto riguarda le attività di resistenza, ripetere più volte un periodo di allenamento in altitudine durante l’anno dà migliori risultati rispetto ad un unico training camp troppo lungo.

    Una volta arrivati ad altura, per non ostacolare gli adattamenti fisiologici è bene non eccedere con l’intensità allenante e concentrarsi piuttosto sul volume. Il primo parametro andrà ricercato gradualmente, col passare dei giorni [18,20]. Autori come Willmoore e Costill consigliano una iniziale diminuzione dell’intensità pari al 60-70%, in modo da non stressare troppo l’organismo, quest’ultima tornerà poi ai livelli standard entro una decina di giorni.

    Esercizi anaerobico alattacidi, quindi molto brevi, non rappresentano un problema in altura, dato l’irrisorio accumulo di acido lattico. Anzi, l’aria più rarefatta diminuisce la resistenza aerodinamica garantendo dei risultati anche leggerissimamente superiori, non è un caso che alle Olimpiadi del 1968, a Città del Messico (2250 m), i velocisti abbiano avuto degli ottimi risultati. Discorso diverso per le discipline con una forte componente lattacida, i quali sarebbe bene evitare e/o limitare data la difficoltà dell’organismo di gestire gli accumuli di acido lattico.

    In ogni caso, a meno che non si debbano svolgere della gare ad alta quota, allenarsi in altura per competizioni anaerobiche ha poco senso. I possibili vantaggi di questa scelta riguardano unicamente gli sport principalmente aerobici. Per essi l’altitudine consigliata è di 2000-3000 metri. Gli atleti, soprattutto all’inizio, saranno sì svantaggiati ma facendo le cose con metodo i miglioramenti non tarderanno ad arrivare. Se generalmente si sta in prossimità del livello del mare è bene arrivare in altura con un livello di VO2max piuttosto alto, bisogna quindi allenare soprattutto la potenza aerobica.

    Allenarsi in alto e gareggiare in basso

    Le problematiche iniziali legate all’ipossia, come riportato qualche riga prima, potranno essere risolte anche in meglio, ció sempre a patto che gli allenamenti vengano svolti con criterio e che altezza e permanenza siano quelle giuste (2000-3000 m e tre settimane circa), repetita iuvant. In questo modo, gli atleti, chi più chi meno, riescono a guadagnare dei livelli più alti di eritropoietina, un aumento della massa cellulare dei globuli rossi e del livello di emoglobina nel sangue. Una volta tornati al livello del mare, questi miglioramenti svaniscono nel giro di qualche giorno. Occorre quindi effettuare gare (di resistenza) entro pochissimo tempo dal proprio rientro. Discorso diverso per gli atleti che gareggiano in basso ma vivono in alto, loro non sebrano aver vantaggi sulle competizioni al livello del mare.

    Allenarsi in basso e gareggiare in alto (live high and train low)

    Anche in questo caso, una volta arrivati in alta quota vale sempre la regola delle 2-3 settimane di adattamento. Se invece non si ha tutto questo tempo a disposizione è consigliabile arrivare in altura poco prima della competizione (12-24h), in modo che l’ipossia non abbia iniziato a mettere sufficientemente in difficoltà il nostro corpo. Per limitarne i danni (in acuto), come già detto, è buona cosa avere i livelli del VO2max (massimo consumo di ossigeno) molto alti, perché ricordo che questo è il parametro che più di tutti risente dell’alta quota, questo già nelle prime ore.

    Secondo la letteratura scientifica, quello del “live high and train low” sarebbe il metodo più efficace per giovare degli adattamenti indotti dalla permanenza ad alta quota ed allenarsi, anche ad alte intensità, quando si è poco sopra il livello del mare [24].

    Ovviamente gli adattamenti e le risposte fisiologiche variano da persona a persona. Si distinguono infatti due categorie di soggetti: i responder ed i non responder. I primi reagiscono positivamente all’ipossia dovuta all’alta quota, gli altri no. Questo soprattutto per quanto riguarda i livelli di EPO [20]. Uno studio di Ri-Li e colleghi [21], effettuato su un gruppo di 48 atleti (32 uomini e 16 donne) evidenzió nelle prime 24 h di allenamento in altitudine (2800 m), cambiamenti dei livelli plasmatici di EPO molto diversi da persona a persona. Alcuni addirittura arrivarono ad un aumento del 400% e altri ad un misero +41%. La causa di tale discrepanza sembrerebbe essere geneticamente determinata (polimorfismi individuali del gene EPO o del gene ricettore dell’EPO).

    F2.large
    Differenza dei livelli di EPO in tutti e 48 i soggetti dello studio precedentemente citato [21]

    Per i soggetti “non responder” si potrebbe tranquillamente accantonare l’idea di effettuare dei training camp in alta quota.

    Una alternativa all’allenamento ad alta quota è indubbiamente la tena ipossica, peccato che il suo utilizzo sul suolo italiano sia vietato (considerato vero e proprio doping). Per ulteriori approfondimenti su questa pratica vi rimando al solito articolo.

    Controindicazioni più e meno gravi dell’allenamento in altura
    • Scottature solari e oftalmia delle nevi;
    • irritazioni delle vie respiratorie;
    • mal di montagna (l’incidenza aumenta con l’altitudine), i sintomi tipici sono il mal di testa, nausea e vomito;
    • edema polmonare (colpisce soprattutto le persone che salgono troppo rapidamente a quote oltre i 2700 m);
    • edema cerebrale (si verifica perlopiù a quote superiori ai 4000 m);
    • emorragia retinica (si verifica dai 6000 m in poi).
    Due parole sulla training mask (TM)

    4a7bfe9d-8041-4589-8d9f-f38cc6471bfeNegli ultimi anni il marketing ben orchestrato è riuscito a propinare al grande pubblico una maschera, che per assurdo ricorda vagamente quella di Bane, il nemico giurato di Batman.

    Tuttavia, a differenza di quella utilizzata da Bane ne “Il Ritorno del Cavaliere Oscuro” la training mask non fa inalare alcun gas antidolorifico. Ma semplicemente rende più difficoltosa la respirazione. E’ stata venduta come, cito testualmente, “Maschera per simulare l’allenamento ad alta quota” ma la verità è che una semplice maschera non può modificare la pressione parziale dell’ossigeno (PO2) e neanche alterare la composizione dell’aria, a meno che questa non sia collegata tramite dei tubi a degli appositi macchinari in grado di simulare l’ipossia.

    A parità di lavoro, se si utilizza la TM la FC sarà più elevata, modificando anche significativamente i parametri di lavoro (esercitazioni a VO2max per la potenza aerobica, individuazione delle soglie ecc.).

    An external file that holds a picture, illustration, etc.Object name is jssm-15-379-g002.jpg
    Variazione della FC nei gruppi di lavoro con (Mask) e senza (Control) delle resistenze respiratorie [23]

    “Dopo 6 settimane di allenamento intervallato ad alta intensità su cicloergometro:
    – Non sono state riscontrate differenze significative (né tra i gruppi né all’interno dei gruppi stessi) nei parametri polmonari o negli indicatori ematici.
    – Solo il gruppo che indossava la maschera ha riportato miglioramenti significativi a livello di soglia ventilatoria (13.9%), potenza alla soglia ventilatoria (19.3%), soglia di compensazione respiratoria (10.2%), e potenza alla soglia di compensazione respiratoria (16.4%).
    – Sebbene il gruppo che si è allenato con la maschera ha riportato i suddetti miglioramenti, sono necessari ulteriori studi per verificare se tali miglioramenti incidano realmente sulla performance dell’atleta.
    – Anche se il dispositivo inducesse adattamenti simili a quelli riscontrati in altitudine, il tempo di esposizione allo stimolo, nel caso specifico 60 min*wk-1, non sarebbe sufficiente ad indurre adattamenti (è stato osservato che nemmeno 114 min*wk-1 in ambiente realmente ipossico sono sufficienti).
    – La ETM (The Elevation Training Mask 2.0) agisce più come dispositivo per l’allenamento dei muscoli” (MMA – Elevation Training Mask?) [24].

    Pertanto, risulta difficile capire quanto i muscoli respiratori possano incidere sulla performance negli sport non di endurance (si stima che negli atleti d’élite praticanti sport di resistenza possano avere un miglioramento del 5-8%).

    Ad esempio, uno studio del 2016, condotto su diciassette cadetti dei corpi di polizia, non ha mostrato miglioramenti associati all’utilizzo della Training Mask, né sulla capacità aerobica, né sui livelli di VO2max [22].

    Conclusioni

    Se l’obiettivo è quello di incrementare i livelli di EPO, l’unica via è quella dell’allenamento ad alta quota, non ci sono scuse, bisogna farsi il mazzo. Ovviamente dei periodi di permanenza in montagna hanno un costo, valutate bene se ne valga veramente la pena. Riguardo alla Training Mask attualmente è molto dubbia la reale utilità di questo costoso oggetto, ciò che è certo è che non influenza in alcun modo i livelli di EPO.

    Grazie per l’attenzione.


    oc
    Bibliografia

    Willmore H. J., Costill L. D. –  Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005)
    Cravanzola E. – EPO: dalla fisiologia al suo utilizzo nello sport (2017)
    Cravanzola E. – Allenarsi ad alta quota: tutto quello che c’è da sapere (2016)
    1 Ekblom B. et al. – Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men (1991)
    2 Strømme A. B. – Training at altitude (1980)
    3 Grover R. F. – Leistungsfähigkeit in groβen Höhen (1983)
    4 Fasano et al. – High-Altitude Exposure Reduces Inspiratory Muscle Strength (2007)
    5 Cibella et al. – Respiratory mechanics during exhaustive submaximal exercise at high altitude in healthy humans (1996)
    6 Schoene et al. – Limits of human lung function at high altitude (2001)
    7 E. R. Buskirk et al. –  Maximal performance at altitude and on return from altitude in conditioned runnerd (1967)
    8 Dott. Bucosse R. – Attività fisica a quote medie ed elevate
    9 Adam W. et al. – Effects of equivalent sea-level and altitude training on VO2max and running performance (1975)
    10 Buskirk E. R. et al. – Physiology and Performance of Track Athletes at Various Altitudes in the United States and Peru (1967)
    11 Grover R. F. et al. – Muscular exercise in young men native to 3,100 m altitude(1967)
    12 Schmitt et al. –  ??? (2008) fonte primaria errata sul libro di riferimento
    13 Pichot et al. – Relation between heat rate variability and training load in middle-distance runners (2000)
    14 Hedelin et al. – Heart rate variability in athletes: relationship with central and peripheral performance (2001)
    15 Mourot et al. – Quantitative pointcare plot analysis of heart rate variability: effect of endurance training (2004)
    16 Green H. et al. – Operation Everest II: adaptations in human skeletal muscle(1989)
    17 Sutton J. et al. – Operation Everest II: oxygen transport during exercise at extreme simulated altitude (1988)
    18 Heinicke K. et al. – A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes (2005)
    19 Suslow F. P. et al. – Die sportliche Leistungsfähigkeit in der Periode der Reakklimatisierung nach Höhentraining (1973)
    20 Chapman et al. – Individual variation in response to altitude training (1998)
    21 Ri-Li et al. – Determinants of erythropoietin release in response to short-term hypobaric hypoxia (2002)
    22 Sellers, John H et al. – Efficacy of a Ventilatory Training Mask to Improve Anaerobic and Aerobic Capacity in Reserve Officers’ Training Corps Cadets (2016)
    23 Porcari J. P. et al. – Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables (2016)
    24 Ness J. – Is live high/train low the ultimate endurance training model?

  • EPO: dalla fisiologia al suo utilizzo nello sport

    EPO: dalla fisiologia al suo utilizzo nello sport

    Tanti, troppi parlando di doping si mettono in bocca la parola EPO ma pochi in realtà sanno di cosa si tratti. Buona lettura!

    EPO

    L’acronimo EPO non é altro che l’abbreviazione della parola eritropoietina, un ormone glicoproteico prodotto naturalmente dai reni, dal fegato ed in misura molto minore dal cervello. La sua funzione principale é la regolazione dell’eritropoiesi, cioé la produzione dei globuli rossi da parte del midollo osseo.

    L’esistenza di  (altro…)

  • Allenarsi ad alta quota: guida completa

    Allenarsi ad alta quota: guida completa

    Non è raro, fra internet e televisione, vedere atleti dei più svariati sport allenarsi appositamente in zone parecchio sopra il livello del mare (+1500 m). Ora, in questo articolo, andremo a vedere le risposte fisiologiche e gli adattamenti indotti dall’allenamento svolto a determinate altezze.

    allenamento7.jpg

    Vi avviso: sono argomenti abbastanza complessi, quindi un po’ noiosi, ma é fondamentale saperli se si vuole essere ben informati su i pro e i contro di certe scelte sportive.

    Un’attività fisica può  (altro…)

  • Allenarsi in base alla frequenza cardiaca

    Allenarsi in base alla frequenza cardiaca

    La corsa è senza dubbio il tipo di attività fisica più praticato in assoluto. Da chi corre per sport, a chi lo fa semplicemente per passione e salute.

    runner-802912_1920

    In questo articolo vedremo come allenarci per diverse finalità, correndo in base alla nostra frequenza cardiaca (fc).

    Prima però è necessario fare un passettino indietro: cos’è la frequenza cardiaca? E i bpm? La frequenza cardiaca è il numero di battiti del cuore al minuto, questi ultimi, abbreviati con “bpm”, sono la sua unità di misura. Per lavorare bene, con una certa precisione, è consigliabile spendere una cinquantina di euro per acquistare un cardiofrequenzimentro, ci si può allenare ed ottenere buoni risultati anche senza di esso ma sarà più difficile, l’autoregolazione non è una cosa alla portata di tutti.

    Per allenarsi senza cardiofrequenzimetro bisognerà ricorrere alla scala di Borg (o scala RPE), tutti i dettagli qui. Nel caso si voglia invece ottenere un numero, indicativo, dei battiti cardiaci si può ricorrere alla misurazione manuale. Ecco il procedimento: mettere due dita alla base del collo, contare i battiti per 15″ esatti e poi moltiplicare il numero ottenuto per quattro.

    Per calcolare la nostra frequenza cardiaca (teorica) ci sono varie formule matematiche, quelle che seguono sono le due più accreditate:

    220 - età (anni)
    Oppure: 208 - 70% età
    es. Lorenzo, 20 anni, FC massima di 200 bpm
    

    Nelle persone sane la FC a riposo è compresa fra i 60 e i 100 bpm, negli sportivi di un certo livello può essere leggermente più bassa (40-50 bpm).

    Ora è giunto il momento di introdurre un altro concetto: VO2max. Il VO2max è un parametro biologico che esprime il volume massimo di ossigeno che un essere umano può consumare nell’unità di tempo per contrazione muscolare.

    E’ misurabile direttamente tramite cicloergometro o indirettamente con altri test fisici. L’allenamento può migliorarlo di circa il 25%. Nei soggetti allenati la soglia anaerobica (punto di passaggio della produzione di energia dal sistema aerobico – in via principale – a quello anaerobico lattacido) corrisponde, negli sportivi, all’85% circa del VO2max e al 60% nei soggetti sedentari.

    002 (2)
    Per ulteriori approfondimenti sui sistemi energetici clicca qui

    Una volta giunti in prossimità della soglia anaerobica (SA), il metabolismo energetico verrà shiftato maggiormente sugli zuccheri, aumenterà l’accumulo di acido lattico e la respirazione sarà più difficoltosa. Oltre il VO2max , in regime alattacido, gli sforzi potranno essere mantenuti per pochi secondi e non si accumulerà acido lattico durante il normale svolgimento di attività fisica.

    Durante l’allenamento, in base alla frequenza cardiaca (FC), possiamo stabilire con discreta precisione quale sistema energetico sia maggiormente attivo. Essa può variare in base all’anzianità di allenamento, sesso ed età di una persona. Ad esempio con una FC inferiore o uguale ai 160-170 bpm (battiti per minuto), il sistema principalmente coinvolto in un uomo giovane ed allenato sarà quello aerobico.

    Effetti allenanti in base alla FC massima
    • <60% = lo stimolo è molto debole, considerato poco allenante
    • 60-75% = capacità aerobica
    • 75-85% = potenza aerobica e soglia anaerobica
    • 85-92% = allenamento anaerobico e tolleranza lattacida

    Capture.JPG

    In passato era credenza comune pensare che un allenamento prolungato a bassa intensità fosse più indicato per il dimagrimento, tanto da chiamare il range compreso fra il 60 ed il 75% della frequenza cardiaca: “zona lipolitica”. Tuttavia si è visto che, benché un allenamento poco intenso attinga maggior energia dai grassi (figura sotto), ciò non significa che in cronico un’attività fisica ad intensità moderata (60-75% FC), abbia effetti dimagranti così superiori  rispetto ai protocolli di allenamento più intensi, questo a parità di dispendio calorico [1,2,3,4,5,6]. Se l’obiettivo è il dimagrimento, la dieta è sempre il fattore principale.

    Capture

    Riguardo invece alla correlazione fra la scala RPE e la FC max, per farla breve, la scala utilizza de valori numerici, da 6 a 20 ed i valori della FC massima sono a grandi linee i seguenti.

    • 6 = 20% FCmax
    • 7 = 30%
    • 8 = 40%
    • 9 = 50%
    • 10 = 55%
    • 11 = 60%
    • 12 = 65%
    • 13 = 70%
    • 14 = 75%
    • 15 = 80%
    • 16 = 85%
    • 17 = 90%
    • 18 = 95%
    • 19-20 = 100%

    Intensità dello sforzo percepito:

    • 6 = intensità nulla
    • 7-8 = sforzo estremamente leggero
    • 9 = sforzo leggero (una camminata lenta)
    • 10-11 = leggero (riscaldamento blando)
    • 12-13 = sforzo abbastanza impegnativo
    • 14-15 = un duro sforzo
    • 16-17 = sforzo molto duro
    • 18-19 = sforzo estremamente duro, intensità submassimale
    • 20 = sforzo massimale

    Alcune cifre sono state prese da “Principi di metodologia del fitness“.

    Prima di lasciarci, una curiosità. Un test di accuratezza che ha analizzato alcune tipologie di cardiofrequenzimetro, ha rivelato che rispetto all’ECG (elettrocardiogramma), i cardiofrequenzimetri più precisi sono quelli che si posizionano sul petto (precisione del 99,6%), molto meno fedeli sono invece quelli da polso (67-92%).

    Grazie per l’attenzione!

    Buon allenamento!


    oc
    Bibliografia

    Gollin M. – Metodologia della preparazione fisica (Elika, 2014)
    Fagioli F., Bartoli L. – Allenarsi con il cardiofrequenzimetro (Elika, 1998)
    Wikipedia – Scala di percezione dello sforzo (link)
    Andy Peloquin – Chest Strap Vs Wristband Heart Rate Monitors
    1 Schoenfeld B. J. et al – Does cardio after an overnight fast maximize fat loss? (2011)
    2 Ballor D. L. et al. – Exercise intensity does not affect the composition of diet- and exercise-induced body mass loss (1990)
    3 Grediagin A. et al. – Exercise intensity does not effect body composition change in untrained, moderately overfat women (1995)
    4 Mougios V et al. – Does the intensity of an exercise programme modulate body composition changes? (2006)
    5 Pansini L. – Bruciare grassi non significa dimagrire (parte 2): effetto dell’attività fisica (2017)
    6 Keating S. E. et al. – A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity (2017)

  • Energia e sport

    Energia e sport

    Anche se magari non ci pensiamo, noi quando mangiamo introduciamo delle molecole – carboidrati, proteine e lipidi – che sono dei veri e propri combustibili biologici. Questi, nell’organismo umano, attraverso centinaia di processi biochimici, in presenza di ossigeno, vengono demoliti e ridotti in anidride carbonica e acqua.

    CaptureFig.1 – I punti rappresentano i metaboliti mentre le linee sono i singoli passaggi metabolici

    Nell’uomo e non solo, i principi nutritivi base che si formano dalla digestione dei macronutrienti, quindi glucosio, aminoacidi e acidi grassi, conservano immodificato il contenuto energetico delle sostanze di origine. Affinché avvenga una produzione di energia occorre che le molecole precedentemente citate siano completamente demolite. Per far avvenire ció, é necessario l’intervento di enzimi ossido-riduttivi specifici, in grado di trasformare le molecole del glucosio, degli acidi grassi e degli aminoacidi in frammenti più piccoli, fino alla formazione del metabolita acetil-CoA (composto a due atomi di carbonio).
    Quello illustrato fino ad ora non é altro che il metabolismo intermedio (MI). Al termine del MI, circa 1/3 dell’energia contenuta nelle molecole di partenza é resa disponibile per le cellule, invece i rimanenti 2/3 saranno utilizzati per reazioni quali il Ciclo di Krebs.

    5887471Fig.2 – Il ciclo di Krebs è un processo biochimico che assolve allo scopo di ossidare (bruciare) ad H2O e CO2, i prodotti della demolizione delle molecole degli zuccheri/grassi/amminoacidi. Fornisce una grande quantità di energia, in parte come calore (mantenimento della temperatura dell’organismo) e in parte come energia chimica.

    In seguito a queste reazioni, l’acetil-CoA viene completamente degradato fino alla formazione di anidride carbonica e acqua (metabolismo terminale).

    Il metabolismo energetico in se, varia parecchio in base alle attività svolte dall’individuo, per questo motivo é importante conoscere il proprio metabolismo basale, detto in maniera estremamente semplicistica: le calorie che una persona spenderebbe se per tutte le 24h non si alzasse dal letto, l’introito calorico minimo necessario a far avvenire tutti i processi fisiologici indispensabili per vivere.

    Kcaloria = 1000 calorie; caloria = quantità di calore necessaria per far salire la temperatura di 1 ml di acqua distillata da 14.5 a 15.5 C°, alla pressione costante di un atmosfera.

    Occorre aprire una piccola perentesi sui carboidrati. Questi, durante la digestione vengono convertiti in glucosio (monosaccaride, zucchero semplice), che tramite il sangue arriva ai tessuti di tutto l’organismo. Essi, in condizioni di riposo, vengono presi dai muscoli e dal fegato, e convertiti in uno zucchero più complesso: il glicogeno.

    Il discorso sul metabolismo si potrebbe approfondire ulteriormente ma mi fermo qui, é giunto il momento di andare al nocciolo della questione. Tenete ovviamente a mente quel che avete letto fino a questo punto perché i macronutrienti (carboidrati, proteine e grassi), più un’altra miriade di fattori, vanno ad influire sui depositi energetici.

    L’energia derivante dai legami delle molecole alimentari è chimicamente rilasciata all’interno delle cellule e poi immagazzinata sotto forma di ATP (adenosinatrifosfato), un composto altamente energetico costituito da una base azotata (adenina), da uno zucchero pentoso (il ribosio) e da tre gruppi fosfato.

    A riposo, la richiesta energetica dell’organismo è poca, quindi l’energia proviene principalmente dalla scissione di grassi e carboidrati.

    All’aumentare dell’intensità di un determinato carico di lavoro, aumenta l’uso energetico dei carboidrati a scapito dei grassi.Capture.JPGFig.3 – Nel caso di sforzi massimali, quindi di breve durata, l’ATP viene prodotto quasi esclusivamente a partire dai carboidrati.

    Quando la molecola di ATP si combina con l’acqua (idrolisi) e subisce l’azione dell’enzima ATPasi, l’ultimo gruppo fosfato si separa dalla molecola di ATP (scissione) rilasciando così energia (circa 7,3 kcal/mole di ATP). L’ATP diventa quindi adenosindifosfato (ADP) e Pi (in questo caso gruppo fosfato).

    Capture.JPGFig.4 – A = la struttura dell’adenosintrifosfato ed i suoi fosfati altamente energetici; B = il terzo fosfato (Pi) di una molecola di ATP viene separato per azione dell’ATPasi con seguente liberazione di energia.

    Dopo, per la successione di diverse altre reazioni chimiche, un gruppo fosfato viene aggiunto all’ADP convertendolo così in ATP. Questo processo è detto fosforilazione ossidativa.

    Quando questi processi avvengono in presenza di ossigeno si parla di metabolismo aerobico, viceversa in assenza, metabolismo anaerobico.

    Le cellule producono ATP attraverso tre processi principali:

    • Il sistema ATP-CP
    • Il sistema glicolitico
    • Il sistema ossidativo

    Sistema ATP-CP

    L”energia liberata dalla scissione del CP (creatinfosfato) serve per ricostruire le riserve di ATP, per mantenerle.                              Capture.JPG

    Fig.5 – Modificazione dell’ATP e CP nel muscolo durante uno sforzo di intensità massimale di 14″ (sprint). Il CP, per prevenire la caduta dell’ATP viene usato proprio per sintetizzare quest’ultima.

    L’esaurimento sia dell’ATP che del CP è facile da raggiungere (es. sprint massimale di 15″), quindi l’organismo per ricaricare le scorte energetiche dovrà per forza affidarsi ad altri sistemi.

    Questi processi possono avvenire sia in presenza che in assenza di ossigeno, tuttvia non ne richiedono obbligatoriamente la presenza. Quindi, il sistema ATP-CP è il sistema anaerobico per eccellenza.

    Sistema glicolitico

    L’ATP viene prodotto tramite l’energia liberata dalla scissione del glucosio (glicolisi, scissione del glucosio attraverso enzimi glicolitici). Il prodotto finale della glicolisi è l’acido piruvico.

    Nella glicolisi anaerobica, quindi senza l’intervento dell’ossigeno, l’acido piruvico viene convertito in acido lattico e quindi viene interrotta la glicolisi. Questo processo riesce a fornire 2 moli di ATP per mole di glucosio.

    Sistema ossidativo

    Quando si parla di ossidazione è sottinteso che ci sia di mezzo il sistema aerobico (bassa intensità, reazioni che avvengono in presenza di ossigeno). Questo sistema ossida i tre macronutrienti, soprattutto i lipidi e i carboidrati, i primi (trigliceridi nel tessudo adiposo e intramuscolare) vengono scissi in acidi grassi e successivamente glicerolo, i secondi sono rappresentati dal glicogeno muscolare e del fegato, il quale viene idrolizzato a glucosio.

    La degradazione del glucosio del sistema ossidativo è detta glicolisi aerobica, avviene nei mitocondri (ovviamente in presenza di ossigeno).

    Altro processo energetico, di cui ho già accennato in precedenza, è il Ciclo di Krebs, in esso l’acetil-CoA viene ossidato e sono generate 2 moli di ATP.

    Altra “arma” di questo sistema è la fosforilazione ossidativa. In essa si passa dall’ADP all’ATP.

    Ultimo processo (ma non meno importante) del s. ossidativo è il “sistema di trasporto degli elettroni“, questo non è altro che una complessa reazione chimica legata al ciclo di Krebs, che è in grado di fornire ben 34 moli di ATP.Capture.JPG    Fig.6 – L’intervento dei vari processi energetici durante un’esercizio di 150″, con sforzo massimale

    I sistemi energetici sono tre: anaerobico alattacido, anaerobico lattacido e aerobico.

    Anaerobico alattacido

    Non interviene l’ossigeno e non si forma lattato; l’energia per la ricarica dell’ATP viene ceduta da una molecola che contiene anch’essa un legame altamente energetico: la fosfocreatina (CP). Il tempo limite medio della capacità del sistema anaerobico alattacido va da 0 a 8-9″.

    Anaerobico lattacido

    Non interviene l’ossigeno ma si forma lattato; l’energia per sintetizzare l’ATP deriva da molecole di zucchero che vengono spezzate fino a dar luogo al lattato. Il tempo limite medio della capacità del sistema anaerobico lattacido va da 2” a 2′.

    Aerobico

    Implica la presenza nel muscolo di ossigeno. L’energia deriva dalla combustione di zuccheri o grassi (in parte minore anche delle proteine). Il sistema aerobico ha un forte intervento negli sforzi che vanno oltre i 3′ di lavoro continuo.

    In ogni caso le cifre sono abbastanza indicative, dipendono da vari fattori. Inoltre, questi sistemi energetici non intervengono uno alla volta ma in contemporanea, in misura diversa. Ad esempio per 3′ di lavoro abbastanza intenso, l’energia sarà prodotta principalmente sia dal sistema anaerobico lattacido che da quello aerobico.

    Capture.JPGFig.7 – Intervento dei sistemi energetici durante la corsa su varie distanze

    energy_systems

    Fig.8 – A seconda della durata dello sforzo, nel tempo, un sistema energetico prevale sull’altro.

    Arrivati a questo punto è necessario introdurre altre due definizioni: capacità e potenza. Per capacità di un meccanismo energetico si intende
    la capacità totale di fornire energia. Per potenza invece, intendiamo la possibilità, per tale meccanismo, di fornire un’importante percentuale della sua capacità nell’unità di tempo (che per convenzione è il secondo).

    Nello specifico…

    • Capacità aerobica = è la capacità di svolgere un lavoro generale in condizioni aerobiche, il più al lungo possibile.
    • Potenza aerobica = è la quantità di lavoro realizzata nell’unità di tempo sfruttando il metabolismo aerobico. E’ sinonimo di massimo consumo di ossigeno cioè la massima quantità di ossigeno che
      l’organismo è in grado di utilizzare nell’unità di tempo.
    • Capacità anaerobica lattacida = lavoro totale che può essere effettuato utilizzando il meccanismo lattacido o, più in
      generale, la capacità dell’atleta di tollerare l’accumulo di lattato nei muscoli e nel sangue.
    • Potenza anaerobico alattacida = quantità di lavoro realizzata nell’unità di tempo con il concorso del metabolismo anaerobico
      alattacido. E’ la capacità di produrre uno sforzo breve il più intenso e veloce possibile.
    • Potenza anaerobico lattacida = quantità di lavoro realizzata nell’unità di tempo con il concorso del metabolismo anaerobico lattacido (glicolisi lattacida).

    Termine di cui tutti abusiamo è l’intensità. Per essa si intende l’impegno del sistema cardiorespiratorio durante lo svolgimentoi di un esercizio. Durante l’allenamento infatti, in base alla frequenza cardiaca (fc), possiamo stabilire con discreta precisione quale sistema energetico sia maggiormente attivo. Essa può variare in base all’anzianità di allenamento, sesso ed età di una persona. Ad esempio con una fc inferiore o uguale ai 160-170 bpm (battiti per minuto), il sistema principalmente coinvolto sarà quello aerobico.

    Il passaggio della produzione di energia dal sistema aerobico (in via principale) a quello anaerobico lattacido è rappresentato da una “soglia”, la soglia anaerobica (SAN).

    Più aumenta l’intensità e con l’effetto soglia si ha un graduale aumento della produzione di acido lattico. Il valore della SAN indica la massima intensità di esercizio, quando questa è raggiunta si ha una concentrazione di circa 4 mmoli di lattato ematico al litro*. Oltre questa soglia, quindi con uno sforzo più intenso, la concentrazione di lattato diventa tale da consentire solo lavori di breve durata (a lungo andare inibirebbe le contrazioni muscolari).

    *Quello di 4 mmoli/L è un valore molto indicativo, ci sono soggetti che possono averlo di 3 come altri che possono averlo di 5 o 6 mmoli/L. In ogni caso sarebbe bene misuralo per venire a conoscenza della propria LT (soglia del lattato).

    Calcolare questa soglia può essere utile per determinare la potenza aerobica, capacità lattacida ed avere un’idea dell’intensità di allenamento a cui far lavorare un atleta. La SAN può essere calcolata attraverso il test di Conconi (con cardiofrequenzimetro), utilizzando degli apparecchi per misurare dei parametri ventilatori o con la misurazione della concentrazione del lattato ematico.

    Un’altra  soglia, anche se meno famosa, è quella aerobica (SAE). Si parla di soglia aerobica. quando i valori di lattato ematico superano quelli basali, arrivando a 2 mmoli/l. L’intesità della SAE sembrerebbe coincidere con il crossover point, punto di confine in cui il sistema aerobico si sposta da un dispendio prevalentemente lipidico ad uno glucidico.

    La fc si può calcolare tramite un cardiofrequenzimetro o con alcune formule

    Fc max. = 220 - età, oppure: 208 - 70% età
    Fc con misurazione manuale = metto due dita alla base del collo, contro i battiti per 15" esatti e poi moltiplico il numero ottenuto per quattro
    Fc corrispondente alla SAN = Fc max x 0,93 (su un atleta)
    Fc      //         //  // = Fc max x 0,70 (su un sedentario)

    All’atto pratico: Lorenzo, 20 anni, tennista

    Fc max = 200; Fc alla SAN = 186

    Effetto allenante in base alla frequenza cardiaca massima

    <60% = lo stimolo è troppo debole, non considerato allenante
    60-75% = capacità aerobica
    75-85% = potenza aerobica e soglia anaerobica
    85-92% = allenamento anaerobico e tolleranza lattacida

    Prima che voi lettori vi addormentiate inserisco giusto un ultimo importante concetto, quello del massimo consumo di ossigeno (V02max). Il VO2max è la massima quantità di ossigeno che l’individuo può consumare nell’unità di tempo per uno sforzo fisico. Questo valore è espresso in ml/kg/min (millilitri per kg di peso corporeo al minuto) e l’allenamento può migliorare questa componente di circa il 20-25%.

    La soglia anaerobica coincide con il 60% del VO2max nei soggetti sedentari e l’85% circa per quelli allenati.

    002 (2).jpgFig.9 – I metabolismi in relazione all’intensità (fc)

    Non saranno argomenti divertenti ma se ci si vuole allenare seriamente questo è l’abc.

    Grazie per l’attenzione.


    Bibliografia

    Wilmoore, Costill – Fisiologia dell’esercizio fisico e dello sport (Calzetti Mariucci, 2005)
    Weineck J. – Biologia dello sport (Calzetti Mariucci, 2013)
    Urso A. – Le basi dell’allenamento sportivo (Calzetti Mariucci; 2a ediz., 2014)